
Hive: Distributed Agents for Networking Things

Nelson Minar, Matthew Gray, Oliver Roup, Raffi Krikorian, and Pattie Maes
MIT Media Lab E15–305 20 Ames Street Cambridge, MA 02139 USA

<nelson@media.mit.edu> http://hive.media.mit.edu/

August 3, 1999 Appearing in ASA/MA ’99

Abstract

Hive is a distributed agents platform, a decentralized sys-
tem for building applications by networking local system re-
sources. This paper presents the architecture of Hive, con-
centrating on the idea of an “ecology of distributed agents”
and its implementation in a practical Java based system.
Hive provides ad-hoc agent interaction, ontologies of agent
capabilities, mobile agents, and a graphical interface to the
distributed system. We are applying Hive to the problems of
networking “Things That Think,” putting computation and
communication in everyday places such as your shoes, your
kitchen, or your own body. TTT shares the challenges and
potentials of ubiquitous computing and embedded network
applications. We have found that the flexibility of a dis-
tributed agents architecture is well suited for this applica-
tion domain, enabling us to easily build applications and to
reconfigure our systems on the fly. Hive enables us to make
our environment and network more alive.

This paper is dedicated to the memory of Mark Weiser, a
visionary and a guide.

1. Computation: ubiquitous, distributed

Computation is changing. Computers are no longer iso-
lated number factories; they are on our desks, on our wrists,
in our pockets, and embedded in devices all over our homes
and offices. Computers are constantly communicating with
each other via wireless networks, LANs, and the Internet.
This new reality of computation demands new paradigms
for building computer systems.

We believe that software agents are an important abstrac-
tion for building distributed systems. Software agents —
small, autonomous, self-describing programs — are an ex-
cellent building block for complex open-ended networked

applications. We have created Hive, a software system im-
plementing an ecology of distributed agents. We are ap-
plying Hive to creating applications for our new networked
computer reality, focusing on connecting embedded com-
puters, or Things That Think (TTT).

The design of Hive has been strongly influenced by the
World Wide Web. We take two lessons from the success
of the Web: the importance of decentralized systems and
the value of simple abstractions. The Web is deeply de-
centralized in that any web page can be linked to any other
without any central administration; similarly, Hive systems
are built entirely out of peer-to-peer relationships between
agents. The key Web abstraction, the web page, is mirrored
in Hive by the software agent. But while the Web is a dis-
tributed system for static data, Hive is for dynamic compu-
tation. We wish to make the Internet alive.

1.1. Ecologies of distributed agents

Our metaphor for building networked systems is the
ecology of distributed agents[21]. In an ecology of agents,
an application is created out of the interaction of multiple
agents across a network. Each agent is located in a particu-
lar place (in Hive, called acell), and uses various local re-
sources (shadows). Agents communicate with each other to
share information and access to resources. An application
is made from the communications and actions of agents.

Why do we use agents? From a programmer’s perspec-
tive, a Hive agent is just a distributed object with an exe-
cution thread. But in Hive agents are more than just ob-
jects, they are the building block of an active distributed
system. Agents provide a conceptual wrapper for several
useful ideas:

� Agents are autonomous: they can be sent into a sys-
tem and entrusted to carry out goals.

� Agents are proactive: they encapsulate computational
activity.



� Agents are self-describing: an ontology of agent ca-
pabilities can be used to describe and discover avail-
able services.

� Agents can interact: they can work together to com-
plete a task.

� Agents can be mobile: mobile agents provide a sim-
ple abstraction for complex, dynamically distributed
systems.

The ecology of distributed agents is a decentralized sys-
tem. We believe decentralization is essential to allow a sys-
tem to grow. Decentralization comes at a cost: agents are re-
sponsible for locating the resources they need, finding each
other, and negotiating their relationships. Hosts are respon-
sible for protecting themselves from unwanted agents and
keeping their own consistency. And there is no single place
one can point to and say “this is the center of the system,
this is where it comes together, this is how we know that
it is working correctly.” Such challenges are the reality of
distributed systems today. The details of how we manage
these problems are described throughout this paper.

Hive is an embodiment of an ecology of distributed
agents. This paper describes specifics of how Hive is im-
plemented, the applications we have built with Hive, and the
lessons we have learned from testing Hive in real systems.
But first, we introduce our primary application domain.

1.2. Things That Think

The goal of the Things That Think project at the Media
Lab is to take the power of computers and networks and put
them into our everyday objects. TTT enhances the physical
world with computation and communication. TTT makes
our computer networks more complex and capable as every
room, appliance, and even light socket begins to “think.” A
full explication of Things That Think is beyond the scope
of this paper; a detailed description is available in [12].

This agenda is shared by many researchers. Mark Weiser
details related ideas under the name “ubiquitous comput-
ing” [32]. In the consumer world, embedded computers
are quite common and technologies such as Bluetooth are
bringing networking to consumer devices. Toys are a leader
of this trend, with networked toys like Microsoft Actimates
or Furby and industry initiatives such as Intel Play [35].
And the computer industry is tackling the problems of net-
worked embedded systems applications with technologies
such as Inferno [9] and Jini [2].

Ubiquitous embedded networking presents a variety of
challenges for application infrastructures. Devices are scat-
tered all over the network, so the system must be fully dis-
tributed. Administrative overhead has to be low, meaning
the system cannot be too centralized. New devices need
to easily be added, requiring an open architecture. Finally,

people will want to add new devices and create new applica-
tions, doing things with the system that cannot be foreseen
by its designers. The system must beflexible.

An ecology of distributed agents is a good match for
these requirements. Hive’s use of agent ontologies and mo-
bility makes it flexible. Agent descriptions allow new capa-
bilities to be announced, discovered, and used. Mobile code
allows for parts of the system to be reprogrammed dynami-
cally, for the network itself to evolve as necessary.

Hive is a good infrastructure for TTT, and TTT is a good
problem for Hive. It is not enough to build an agent sys-
tem in the abstract; the system has to be tested, used, un-
derstood. Building TTT applications with Hive has helped
us validate its design principles and taught us many lessons
about the design of agent-based distributed systems.

2. The Hive architecture

Hive consists of three components: cells, shadows, and
agents. The Hive network is a decentralized collection of
cells. A Hive cell is the analog to a web server, a program
running on a specific computer with a published network
address. Each cell contains a set of local resources called
shadowsthat encapsulate capabilities such as a screen dis-
play or a digital camera. Each cell is also host to many
agentsthat use local resources and communicate with each
other. By analogy to a conventional operating system, a cell
is like a kernel, shadows are like device drivers, and agents
are like processes.

A schematic diagram of the Hive architecture is pre-
sented in figure 1. Hive is a set of Java libraries; currently,
the system consists of roughly 280 classes in 24,000 lines
of code, half of which are generic infrastructure and half
specific code for about 30 devices and 60 agents. In addi-
tion to the basic Java libraries, Hive makes extensive use
of Java Remote Method Invocation (RMI) and serialization
for agent communication and mobility. For ontology sup-
port Hive uses the SiRPAC RDF library [25].

2.1. Cells: nodes in the decentralized network

The Hive cell is a program that participates in the net-
work. Cells perform two primary tasks: hosting soft-
ware agents and managing access to local resources through
shadows. The ideal model would place a Hive cell on every
device. However, Hive cells require a fair amount of CPU
power and memory, and so they currently run on desktop-
sized computers that proxy for several devices. A typical
cell has several devices providing input resources (such as
a motion sensor, camera, or digital tag reader) and output
resources (a computer display, a small robot, or a speaker).

Hive has alocation dependentmodel of a distributed sys-
tem. Hive cells are not all the same: each cell has a specific



Shadow

Cell

Agent

Figure 1. Hive Architecture

set of shadows and a specific population of agents. If one
wants access to a particular device, one has to contact an
agent on the cell that has access to that device’s shadow.
This model is in contrast to many distributed systems that
try to abstract away the concept of location. Hive explicitly
uses the locations of shadows and agents to help organize
and partition the system. Things have places.

Hive cells are created as necessary to represent devices,
and are intended to be long-lived processes. Each Hive cell
is an equal peer in the network. Agents on one cell can com-
municate with agents on any other for a completely free-
form, decentralized system. Federations of Hive cells are
formed ad-hoc. Hive cells typically run a “server list agent”
that contacts a registry to maintain membership in the global
Hive network, but cells are free to arrange for their own fed-
erations as needed.

2.2. Shadows: local resources

A Hive cell by itself is simply a shell; a cell is interest-
ing because of the shadows it provides. The term ‘shadow’
suggests its role of encapsulating a local resource. Physical
devices are ‘shadowed’ into the Hive cell. For example, a
Hive cell may have a digital camera plugged into it. The
camera’s shadow provides a software interface to the hard-
ware, with methods such astakePicture() andset-
Brightness() . If an agent wants to directly use a cam-
era, it moves to the camera’s cell, asks the cell for the cam-
era shadow, and then invokes the shadow with standard Java
method calls.

Shadows are simple, they are nothing but an API to ac-
cess a specific resource. However, the shadow abstraction is
very useful for structuring a system. Shadows are the static
part of a Hive cell; a system designer writes a shadow once,
encapsulating all of a device’s behavior, and then freezes
that code in place. The flexibility of the system comes
from the mobile agents; the shadows provide the static layer

which the agents access.
Shadows also provide the place for a Hive cell to enforce

a security or resource control policy. Shadows are trusted
code. Shadows are not mobile, and they do not communi-
cate directly over the network. To export a device’s func-
tionality off the local cell, an agent must mediate between
the shadow and the network.

2.3. Agents: active computation

If shadows are the fixed, static, local component of the
system, then agents are the active, dynamic, networked as-
pect. Hive agent sembody the network interface and policy
for resources. Technically, a Hive agent is a combination
of a Java object, an execution thread, a remote interface for
network communication, and a self-description. These four
simple pieces together create an agent, a full-fledged au-
tonomous process in the distributed system.

Agents live on specific cells, accessing shadows for the
resources they need. Agents export selected functionality
to the network and communicate with each other to share
those functions. For example, a camera agent can export
the picture taking functionality of the camera shadow to re-
mote agents. An image displayer agent can then invoke this
method over the network, implementing a simple remote
picture taking application. Hive applications are built out
of a collection of interacting agents. Agent interactions, de-
scriptions, and mobility are discussed in section 3.

2.4. User interface

Hive provides a graphical user interface to the distributed
system. In Hive, the computer display is simply another
shadow; any agent can draw on the screen by sending a Java
graphical component to the appropriate shadow. The Hive
user interface is implemented as an agent. TheAWTUIA-
gent provides a graph view of the state of the system and



a control interface by communicating with system agents
such as theServerControlAgent and ServerIn-
foAgent . By using agents for system tasks, Hive itself
benefits from the distributed agents approach.

A screenshot of the user interface is shown in figure 2.
The user interface displays two major aspects of the system:
agents and the connections between agents. Each agent is
represented as an icon. The agents at left are a simple cam-
era application (described below), the agents at right are
system management agents. Agent communication paths
are shown as arrows between icons. The visualization is dy-
namic — as agents message each other, messages are shown
as animations along the connection arrows. The interface
can display multiple cells; this example shows two.

The user interface is not for information, it is also for
control. New agents can be created from the drop-down
menus. Agents can be connected to each other by draw-
ing lines between them. And agents can be moved or killed
by popping up their menus. The Hive user interface makes
it easy for users to experiment with agent populations and
create new applications with the stroke of a mouse.

2.5. A simple example

The image shown in section 2 is from a basic application
we use to demonstrate the Hive system. The core of this ex-
ample consists of three agents: an on-screen button (upper
left), a digital camera (middle left), and an on-screen im-
age display (lower left). The application is simple: the user
clicks the button, the camera takes a picture, and the picture
is displayed on screen.

Three agents work together to build this application: the
button, the camera, and the display. The button and dis-
play both send graphical components to the cell’s computer
screen. The camera shadow uses a local resource, a digi-
tal camera. When the camera agent is created it asks the
cell for access to the camera shadow; if all is well, access is
granted and the agent can take pictures and send them over
the network.

Once all three agents are established, all that is left is
to connect them. The image display agent connects to the
camera agent, and the camera agent connects to the button
agent. When a user clicks on the button, the button agent
sends an event to the camera agent. The camera agent in-
terprets this as a command to take a picture and sends an
event to the display agent with the image embedded as data.
In this example, the camera agent is on a second computer;
the agents are communicating over the network to create the
application.

This distributed application is not itself new. What
makes Hive interesting is the simplicity and flexibility with
which applications like this can be built. New applications
can easily be built by connecting existing agents. An agent

that detects the motion of a door opening can connect to
the camera to get pictures of everyone who comes into the
room. A face recognition agent can use the camera to dis-
cover the names of visitors. Or an agent could scour the
Hive network looking for camera agents, to build a photo
gallery of an entire building. Finally, mobile agents can be
dropped anywhere into the network, dynamically upgrading
and changing pieces of the application. All of this flexibility
can be used any pre-planning and without altering any other
agent’s code. This is the power of an ecology of distributed
agents.

3. Hive agent implementation

Hive agents live out their lives on cells, possibly trav-
eling the network. Agent interaction is ad-hoc, based on
simple distributed object techniques. Hive agents have a
rich ontological basis, using both the Java type system and
the Resource Description Framework [19] as description
languages. While creating a practical system to network
Things That Think we have tried to balance working on
deep agent research questions against creating simple, use-
ful software for everyday programmers. Hive draws tech-
niques from many parts of agent research including agent
autonomy, mobility, multi-agent interaction, and agent on-
tologies. For each of these fields, we have tried to extract the
most essential pieces, bypassing complexities and unsolved
problems.

3.1. Agent anatomy

All Hive agents are rooted in a common agent base class.
We have tried to adopt a minimal approach to designing
Hive, only adding fields and methods when we are abso-
lutely sure we need them. We have drawn inspiration from
other mobile agent systems such as Aglets [17], particularly
for the agent lifecycle, but have tried to simplify where pos-
sible.

Every agent stores two fields: the cell the agent is living
on and a pointer to a “description” object that is used for
semantic description. In addition, application agent sub-
classes typically have additional internal state for their own
computation.

The agent class is a subclass ofUnicastRemoteOb-
ject , the basis of remote objects in RMI. This class allows
for the methods of an agent to be executed remotely. Choos-
ing RMI as the agent communication mechanism simpli-
fies the Hive architecture: agents are simply remote ob-
jects, we do not require any extra agent communication sys-
tem. The cost for this simplicity is control; all management
of agent communication has to be done within RMI. Hive
does not have explicit control over agent messaging, placing



Figure 2. Hive Camera Application

the responsibility for understanding messages and deciding
whether to act on them with the agents themselves.

3.2. Agent interaction

Agent interaction in Hive is completely ad-hoc. We
make no requirements for agent communication, it is up
to individual agents to decide how to talk to each other.
Agent communication occurs via RMI’s remote method in-
vocation, allowing for agents to synchronously call meth-
ods on each other. We have added asynchronous calls to
RMI so that agents can decouple their interactions. Java’s
strong typing syntactically structures agent communication,
but agents are free to define their own semantics.

Each agent has two types: the true type of the agent’s
object, a subclass ofAgentImpl , and the agent’s remote
interface, a subtype ofAgent . This duality is common
in RPC-like systems. While initially it might seem a nui-
sance to write two types for every agent, the split between
an agent’s remote interface and its local implementation is
useful. In particular, agents have bookkeeping and admin-
istrative methods that would be inappropriate other agents
to call. Because agents can only access each other’s remote
interfaces, sensitive methods are protected by Java’s type
system. And in practice many agents can simply inherit
their remote interface, eliminating the need to define one.

The base agent interface has several methods that can
be called remotely. Some methods are informational, such
asgetServer() andgetDescription() . Other re-
mote methods are administrative, such asdiePlease() .
This may seem a strange method to make remotely accessi-

ble, but it allows agents to manage other agents. And while
any agent can ask another to die, the remote agent does not
necessarily have to comply.

Finally, agents have remote methods for managing ab-
stract “connections.” An agent can ask another tocon-
nectTo() or disconnectFrom() an agent, or ask it
to listAllConnections() . As with all aspects of an
agent’s interface, these methods are purely advisory. Agents
are free to define their own meaning of “connection” and to
ignore requests. We have found that several simple com-
munication patterns, particularly event publish/subscribe,
are broadly useful. For example,EventListeningA-
gent s connect toEventSendingAgent s, following the
Jini Distributed Event specification [2] to pass event objects
around the system.

In addition to these standard agent methods, applica-
tion agents can define extra methods in their interfaces.
For example, Hive uses agents to manage system func-
tions. A cell’sServerControlAgent has remote meth-
ods such asmoveAgent() or shutDownServer() .
Other agents (such as the user interface agent) communicate
with this agent to control remote cells. TheServerCon-
trolAgent is responsible for deciding what to do when
these methods are invoked; agents implement their own se-
curity policy.

3.3. Syntactic ontology

Hive relies on the ability of agents to describe them-
selves to make ad-hoc agent interaction coherent. Every



agent in Hive is described in terms of two orthogonal on-
tologies: syntactic and semantic. Hive cells provide a query
service based on these descriptions so that agents can find
each other. For example, a remote agent can ask for a list
of all agents that are “EventSendingAgent s that can
provide me with motion data in room E15–305.”

The syntactic ontology of agents in Hive comes for free
from Java. An agent’s syntactic description is simply its
Java type. While this may seem trivial, its usefulness
should not be overlooked. The type of an object says much
about its capabilities with reference to a well-established
and well-understood ontology, the class hierarchy of the
system. Given a reference to an agent, it is easy to learn
which types that it supports and, therefore, the messages it
understands. ThequeryAgents() interface on a Hive
cell allows the requester to list the types it is looking for.

There are several hard problems we have not solved with
the syntactic ontology. Two classes might have the same
name but in fact be different versions or different types en-
tirely. Hive can not guarantee consistency. Mobile code
means that the syntactic ontology of Hive is open-ended; if
a new agent class comes into the Hive network, other agents
might not know about that type to query for it or message
to it. We do not see any way to solve these problem with-
out answering fundamental epistemological questions. In
keeping with the practical bent of the Hive system we have
chosen to defer working on these issues. So far, they have
not hampered our ability to create useful systems. We be-
lieve that in building practical applications people can engi-
neer their agents to work around these problems, by either
creating an ontology for a project or following consensus
practice.

3.4. Semantic ontology

A syntactic ontology is not enough to describe agents,
there are many bits of information about an agent that do
not fit into a rigid class hierarchy. For instance, the fact that
an agent is representing a device “in room E15–305” is not
easy to codify syntactically. One could add agetRoom()
method to the agent as part of aRoomIdentifying in-
terface, but then that method would make no sense on many
agents that do not have a physical location.

The limitations of Java class hierarchies for semantic de-
scription are compounded by the fact that an agent might
want to assume different capabilities at runtime. For exam-
ple, an agent that filters event streams might need to assume
many different identities depending on what event source it
is connected to. But in Java one cannot add interfaces to an
object at runtime, the type of an object is static.

To circumvent these limitations, Hive uses a second or-
thogonal ontology to describe “semantic” information about
agents. This ontology utilizes the Resource Description

Framework (RDF) [19], itself based on XML [5]. RDF pro-
vides a structured way to attach nouns and verbs to agents.
For example, an agent’s semantic description might state its
physical location, a human readable nickname, the owner
of the device it is using, and a description of the meaning
of its data. Hive agents carry an RDF description, avail-
able by callinggetDescription() . Other agents can
inspect this description to learn about the agent, and the cell
query interface supports matching across sets of RDF de-
scriptions. Agents are free to change their descriptions at
runtime.

Our semantic ontology does not solve any deep philo-
sophical problems, but it allows application designers to
express their own solutions. We expect that application de-
signers will develop their own schemas to make agent com-
munication semantically consistent. These schemas may be
completely ad-hoc or may be strictly defined by an SGML
DTD and a DDML schema [4]. We expect users to collab-
orativelydefineschema by common consensus while build-
ing Hive systems. As the Hive network grows, ontologies
should emerge from common practice.

3.5. Mobility

A final aspect of Hive agents is that they are mobile.
Hive mobility has two portions: mobile code and mobile
agents. Mobile code enables the software on each Hive cell
to be updated dynamically. Mobile agents build on mo-
bile code, allowing agents to move themselves around the
Hive network. Hive agents have weak mobility [3]: the
agent must make its own arrangements for preserving its
execution state on transport. We believe strong mobility is
preferable but is currently too difficult to implement in Java.
There are a couple of experimental systems that achieve
strong mobility by modifying the JavaVM [14] [22], but a
standard mechanism has yet to be defined.

Some of the advantages of mobile agents are well un-
derstood [7] [18]. If an agent is using lots of bandwidth
or needs low-latency access to a resource, then it can be
more efficient for the agent to move to the resource’s cell
than to communicate with it (through another agent) over
the network. And if a Hive cell has unreliable network ac-
cess, moving agents to a more stable Hive cell can make the
system more robust.

We are most interested in the use of mobility to achieve
flexibility. This property is especially important in het-
erogeneous networks of embedded systems. A Hive cell
might be deployed as embedded software in a smart de-
vice, something small whose firmware cannot easily be up-
graded. With Hive in its firmware, the device-specific soft-
ware can easily be updated by simply sending a new mo-
bile agent to it. And mobile agents allow the functionality
of cells to be customized. For example, mobile agents can



turn a camera into a motion detector. A camera agent has a
simpletakePicture() method. By comparing images,
another agent can decide if something has moved. A motion
detector agent can be created and moved to the host with
the camera, saving the bandwidth of shipping images across
the network. And the motion detector function can remain
a separate component, keeping the camera agent simple.
Hive’s use of mobility enables efficiency and conceptual
cleanness, useful attributes for building applications.

Finally, Hive provides mobile agents for future expand-
ability. We believe that mobility will ultimately enable a
new form of distributed system, one where agents travel
around the network freely performing their tasks and the
network as a whole comes alive with computation.

4. Hive applications and experiments

The design of Hive has been motivated by the specific re-
quirements of our application domain, Things That Think.
The iterative experience of building applications with Hive
has greatly influenced its design. The ease with which ap-
plications can be built in Hive demonstrates that an ecology
of agents is an effective way to create a distributed system.

4.1. Honey, I Shrunk the CDs, Part II

A simple system we have built with Hive is a jukebox
with a physical interface. The application appears straight-
forward: a user selects a poker chip with the name of a song
written on it. She drops it on a table, and the song she has
selected start to play. The poker chip is a stand-in for the
CD, a physical icon.

The activity behind the scenes is more complex. The
poker chip has an embedded RF ID tag. The table contains
a tag reader that senses tags and passes their IDs along a se-
rial port. A tag reader agent watches the serial port shadow
and broadcasts a Hive event when a new tag is sensed. This
event is picked up by a database agent that maps a tag ID
to a song name, broadcasting it to a third DJ agent that
plays the MP3 file. The three agents working together over
two machines make the jukebox work. The system is self-
repairing; agents on one Hive cell watch for failure of the
other agents, restarting them as necessary.

An earlier version of this system was implemented as
one monolithic application. The Hive version took roughly
half the effort to implement and is more robust and more
flexible. By factoring the pieces of the system into three
agents, it is easy to add new interfaces to the jukebox such
as a standard remote control, a web page, or an “intelligent
agent DJ” that could pick music based on people’s prefer-
ences.

4.2. Tangible interfaces and ambient displays

Honey, I Shrunk the CDs is an example of atangible
interface, a new form of human computer interface using
physical objects instead the standard keyboard, mouse, CRT
[15]. The Media Lab has an active tangible interfaces re-
search agenda, building a variety of creative things that
think. Many of these are “ambient displays,” devices such
as an animated pinwheel or soft light display that subtly
convey information. In the past it has been difficult for oth-
ers to use these displays in their own projects: the hard-
ware interface for each device is different and often undoc-
umented. But with Hive all that is necessary is to create a
Hive cell with a shadow for each device. The device can
then be used by any Hive agent anywhere on the Internet.

A Hive interface has been created for Craig Wisneski’s
Personal Ambient Displays [33]. These things are small
objects with different input and output capabilities. Some
objects grow warm or vibrate on command, others sense
when they are touched or shaken. These objects are con-
trollable through Hive. They can be connected so that when
one is shaken the other warms up. Or they can be hooked
to external information sources so that one starts to vibrate
when your stock portfolio’s value drops precipitously. Hive
provides a flexible, simple way to experiment with connect-
ing these devices to each other and to other Hive-enabled
devices.

4.3. Wearable computing

Another Hive-related research project in the Media
Lab is wearable computing, making people themselves be
“things that think” by putting computation in their cloth-
ing [28] [24]. The Media Lab is outfitted with “locusts,”
beacons that broadcast the room they are in. Brad Rhodes
wearable computer uses these to figure out where he is in
the building. And because Brad’s wearable computer is a
Hive cell, his Hive agents can choose to make this infor-
mation available to other agents so that people can easily
find him. An agent in his office can use this information to
play his “theme music” when he walks in by telling a DJ
agent from Honey, I Shrunk the CDs to play the appropriate
music. Wearables offer new opportunities for personalized,
context-sensitive applications. The decentralization of Hive
makes it possible to preserve privacy as well, as your own
agents control your personal data.

4.4. Counter Intelligence

The largest application built with Hive to date is
“Counter Intelligence,” a project to make kitchens smarter
[13]. Counter Intelligence outfits a kitchen with embed-
ded networking: the pantry knows what ingredients you
have, the counter knows what you are currently using, a



scale knows how much you have added to the bowl, and
the oven is automatically set to bake at the right tempera-
ture. A recipe planning agent (incorporating STRIPs [10]
and procedural nets [26]) runs behind the scenes, helping
you bake your cake. Counter Intelligence is a working sys-
tem, currently implemented with eighteen agents running
on two computers.

Hive provides the infrastructure for these agents, sim-
plifying the process of managing their interactions. The
ontology system is key for allowing the agents to coordi-
nate and dynamically adapt to newly available hardware;
planning agents inspect what information is available in the
kitchen and use that data to help effect a recipe. The system
is open-ended; new devices can be added to the kitchen,
or you could even network your kitchen to your mother’s
across the country to get her help while baking. Counter In-
telligence has been a good testbed for Hive, placing strong
demands on the agent infrastructure.

4.5. Summary of applications

The applications described above give the flavor of
things we are networking with Hive. Hive has proven to
be a useful application infrastructure for connecting things.
But the real power of Hive is not just that one can network
a few things in Hive, it is that the Hive network itself is
open and flexible enough that new connections can be made
with little cost. For example, it is trivial to use Hive to
network wearable computing to tangible interfaces, or use
both sets of devices to control your kitchen. Once an agent
is written to represent a capability, Hive allows anyone to
connect those agents together and build new distributed ap-
plications. From the experience of the Web, we know the
power of such synergy.

5. Lessons from Hive

The experience of building real systems with distributed
agents has been educational from the perspectives of soft-
ware engineering, distributed systems, and agents. As we
continue to experiment with Hive we have uncovered sev-
eral practical lessons as well as pointers for future work.

5.1. Java, RMI, asynchronous messaging

Java is a wonderful language for building distributed
agent systems. Many of the things about Java that make
it pleasant in general are particularly useful for distributed
systems. Strong typing gives Hive a syntactic ontology for
free. The simple object oriented model, particularly the
split between interface and implementation, makes it easy
to build class hierarchies of agents. AWT makes it easy
to write portable graphical agents. And the Java security

model makes it thinkable to build a system that executes
untrusted code.

While Java is fairly advanced for Internet programming,
we have found that the options available for distributed
Java are a bit lacking. Hive started out as a Voyager 1.0
based system. Voyager provides many nice capabilities for
distributed agents, including messaging and mobility [37].
Voyager was a good toolkit for building our system, but in
order to give ourselves more flexibility in messaging and
mobility and to give the option of moving towards Jini, last
year we reworked Hive to use Java RMI. This retooling was
an interesting experience in itself; porting the codebase over
was surprisingly easy as most of the agents are isolated from
the details of transport.

A major advantage of the change to RMI was the ro-
bustness that comes from being forced to handle commu-
nication errors. This argument is made well in “A Note on
Distributed Computing” [31]. Voyager tries to provide a
transparent model of networking, where messaging failures
between agents do not have to explicitly be caught. The
danger of this approach is that network failuresdo happen,
and it is better if agents explicitly know this and have to deal
with the potential for error at every communication. RMI’s
requirement to catchRemoteException makes it easier
to build robust distributed systems.

RMI has limited us in several ways. RMI in Java 1.1
has several implementation limitations that make it diffi-
cult to scale to systems with many concurrent agents. And
RMI’s design is entirely synchronous calls, which do not
work well for agent communication. Synchronous commu-
nication means that agents are unduly dependent on each
other, having to wait for each other to respond to mes-
sages. Synchronous messaging is particularly inappropri-
ate for distributed event systems, where the sender typically
does not care if the event was even delivered. In our view,
asynchronous messaging is a fundamental requirement for
any distributed agent system. We have added asynchronous
messaging on top of RMI, but a fairly complex implemen-
tation is required to avoid scalability problems.

5.2. Decentralization

We have also learned that decentralization is a useful
strategy at many levels. We believe the ultimate advan-
tage of decentralization is scalability. Centralized systems
break when the central manager is overwhelmed, but de-
centralized systems can spread the load. However, the Hive
network is still small enough that we have not seen many
technical scalability advantages.

We have found organizational advantages to decentral-
ization. New Hive users need no setup, they can simply
start a cell and join the network. This lowers the barrier for
use of Hive. Individuals are free to develop their own agents



without any central coordination. If someone makes a new
kind of device that sends out device data, they can deploy an
agent to represent it and have other agents use it without ex-
plicitly teaching the system about the new agent type. And
the free software community has found that decentralized
software development is an effective way to quickly build
large systems [23].

Another surprising advantage is the robustness of the de-
centralization of server bookkeeping tasks. Hive agents take
care of maintaining a federation of servers, broadcasting
server state, controlling the server, and displaying the user
interface. Sometimes these agents crash. But just because
one agent fails does not mean the whole system dies. For
example, the user interface might stop working, but the rest
of the application agents merrily continue. The user can
even create a new user interface agent and send it over to
the cell, fixing the problem! This sort of robustness is quite
appealing.

Decentralization has drawbacks. Some desirable func-
tions require global state, such as maintaining a listing of
Hive cells running in the network. Current implementations
of these functions in Hive are cumbersome, naively central-
ized, and do not scale well. Making decentralized systems
consistent is difficult; one cannot rely on a central architect
to make things right, each portion of the system is responsi-
ble for itself. For a small distributed system this might be a
weakness, but this decentralization is essential if the system
is to grow beyond the management of a single administrator.

5.3. Mobility

Mobility has proven to be a challenging problem, both
in the details of implementing mobile code as well as the
general picture of using mobile agents. When moving from
Voyager to RMI we implemented our own small mobile
agent system (based on standard serialization and network
class loading), but getting the implementation details of
Java class loaders right has been tricky. Furthermore, our
experience has pointed out two deep problems in mobile
code that are unsolved. One issue is versioning: when code
is mobile, it is common to have multiple versions of classes
in the network at the same time. Java’s tools for managing
versioning are incomplete. It is also quite subtle to load all
of an agent’s code. Because of Java’s late class loading, an
agent might decide it needs a class file long after the host it
came from has gone away. Current solutions are awkward,
generally requiring specifying a static code base or trying to
precalculate the closure of all required classes.

An honest appraisal reveals our second problem with
mobility in Hive: while we do benefit from mobile code, we
do not use mobileagentsvery often. Our problem is con-
ceptual; most of our current applications are fixed, agents
do not need to wander the network. We have had a few

practical examples of using mobile agents — sending an
agent over to a computer because it was easier than walk-
ing over to it, or demonstrating the system to a new user by
sending agents to their cell. But we still mostly statically
and locally manage the agent population. All the classic
arguments for mobility such as improving bandwidth, lim-
iting latency, and supporting disconnected operation apply
to Hive applications as well. And we expect as the system
grows the system flexibility benefits of mobile agents will
increase; some of our ideas for how this may happen are in
section 6.2.

5.4. Ad-hoc interaction

Finally, we have found that the ad-hoc agent interaction
of Hive has suited us quite well. The open nature of agent
interaction might make the Hive system seem perilously un-
predictable and inconsistent. Theoretically, it probably is:
any agent could lie, any agent could ignore messages, any
agent can interpret any method however it wants to. Ab-
stractly, we can say nothing about a Hive application’s cor-
rectness. But this uncertainty is the reality of the Internet,
and we have learned to work with it. In general, people
are cooperative. Agent designers can work together to build
compatible software.

At this stage, restricting ourselves to a paradigm that is
formally correct would hamper the growth of Hive. Formal
agent communication mechanisms tend to be understood
only by specialists and often require centralization of de-
velopment and restricted agent communication. Hive takes
the view that it is more important to enable system designers
to build the right thing than to prevent them from building
wrong things. Hive treats the most seriously wrong things
as security problems and the rest as bugs.

The agent interaction paradigm was chosen to make it
simple to build multi-agent systems. Our users write Hive
programs much like they would write conventional pro-
grams. This familiarity is a strong advantage in gaining
users. We do not know how well this ad-hoc interaction
will scale. As long as the Hive community remains small,
we can communicate in person and work up consistent class
hierarchies and semantic ontologies. But if Hive grows to
thousands of users, that friendly coordination will no longer
work. To this concern we can only remark that we would
love to have the problem of too many users, and that when
this day comes to pass we will understand the shape of the
problems well enough to choose solutions.

6. Future work

Our ultimate goal for Hive is to make the Internet come
alive with agents running everywhere, interacting via dis-
covery and ad-hoc communication, moving from host to



host. To reach this goal we still need to address several
large topics and add new capabilities. Foremost, Hive must
be stable enough for cells to run persistently. We are mostly
there: cells run for weeks at a time without any problems.
The main difficulty is that because Hive is under rapid de-
velopment, old versions of the system become incompatible
very quickly. We need to find some way to handle the issues
of versioning. We also need the experience of more appli-
cations and more users. The more users of Hive, the more
interesting the network becomes. We are making an open
source release of Hive at the end of the summer in 1999,
so that others in the research community can use it to build
their own distributed applications.

6.1. Security plans

One major missing component for Hive is a full secu-
rity system. Mobile agent security breaks down into three
problems: protecting the host from the agents, protecting
the agents from each other, and protecting the agents from
the hosts [30]. The first problem is largely solvable in Java,
through a combination of the Java 1.2 sandbox model and
the Hive shadow abstraction. The main limitation is that
Java has no model of resource accounting, there is no way
restrict how much CPU time or memory an agent uses.
There are various efforts underway to address this problem
[8] [36]. Ultimately, we see many exciting research oppor-
tunities for applying economic models to resource control
[20] [6].

Protecting agents from each other is harder, but we be-
lieve it can be addressed through a combination of Java
strong typing and an authenticated credential system. The
problem of protecting agents from malicious hosts is very
difficult: solutions are partial at best [27]. The Hive archi-
tecture explicitly states that agents are only allowed to ex-
ecute on a cell at the cell owner’s whim. We believe many
useful applications need no more than this guarantee, as-
suming that users have an incentive to cooperate.

6.2. Mobility

While mobile code has proven useful in Hive, mobile
agents have not played as big a role as we had hoped. This
fact is largely a symptom of the maturity of the system. As
the Hive network grows larger, mobility will become more
attractive as a solution for managing the agent population.
In an ideal decentralized system, any user should be able
to add new functionality dynamically, without consulting
any central authority. Mobile agents are the simplest, most
straightforward way to enable this, and we expect that hav-
ing mobile agents will make Hive better prepared to handle
larger distributed systems.

We are anticipating several near-term applications of

mobile agents within Hive. We envision “census-taker”
agents that wander the Hive network, exploring to see what
cells and agents are available in the world. We also expect
to create information gathering agents that travel the globe,
moving around to take advantage of spare CPU cycles or
following daybreak from cell to cell to capture pictures of
the dawn. Overall, we see mobility as an essential part of
making Hive flexible enough to grow to encompass the pos-
sibilities of open distributed systems.

7. Related work: Jini, agents

Hive’s model of an ecology of distributed agents draws
from the experience of many other agent systems, in gen-
eral emphasizing practicality and simplicity of program-
ming over formality and provability. Our core method of
building applications from distributed agents is inspired in
part by Actors [1], albeit without the strong formalism of
Actor theory. Hive’s mobility is in many ways a reimple-
mentation of systems such as D’Agents [14] [16], Aglets
[17], and Mole [29]. We have tried to implement a simple
version of mobility, ultimately intending to create our own
solutions to the hard problems such as versioning and ship-
ping complete code. By contrast to many multi-agent sys-
tems, Hive does not have any formal model of agent com-
munication or negotiation [34]. We believe that useful dis-
tributed systems can be built without this conceptual over-
head and that theory will be most applicable after we under-
stand the problems that occur in practice. Higher level com-
munication mechanisms such as KQML [11] can be added
on top of the basic RMI communication layer as necessary.
We have made the deliberate choice to design Hive to be
palatable to systems builders, sometimes at the expense of
theory.

Many distributed systems are being built today to ad-
dress problems of embedded network applications. Sun’s
Jini system [2] is a leading architecture in this domain. A
comparison between Hive and Jini is useful for highlighting
the details of Hive’s ecology of distributed agents. In some
cases we are trying to make Hive more like Jini. In other
cases, we believe Hive has advantages.

Both Hive and Jini are distributed application infrastruc-
tures, both are based on Java, and both rely on RMI dis-
tributed objects and mobile code. Both systems have dis-
covery and lookup implementations. Hive and Jini both
make extensive use of events for communication; indeed,
Hive uses the Jini distributed event specification. And both
systems represent devices and capabilities on the network,
proxying if necessary.

Jini services are roughly analogous to the combination of
Hive’s shadows and agents. But Jini does not have anything
like the conceptual split between the two. The distinction
between shadows and agents gives Hive a useful abstrac-



tion between local, trusted code and networked, untrusted
code. The autonomy of Hive agents gives a clear place to
place computational activity in the system.

Another important difference is Hive’s location-
dependent model. In Hive, an agent’s cell is an important
fact; it tells you where the agent is on the network, (poten-
tially) where it is physically, what resources it has access
to, etc. Jini focuses mostly on services; the actual place a
service is hosted on is not a major part of the Jini model.
We believe that the location dependence of Hive contributes
to scalability, both technically and conceptually.

Both Jini and Hive rely on mobile code for flexibility,
and the argument for the usefulness of mobility is the same.
A difference is that Jini only has single hop mobility: a ser-
vice can upload a smart proxy to the user as an interface,
but that proxy does not then migrate around the network.
Currently, we do not make much use of Hive’s multi-hop
mobile agents, but we believe that it will become more im-
portant as the system grows.

For description, both Jini and Hive use the Java type sys-
tem for a syntactic ontology. But where Hive uses RDF
for semantic descriptions of agent capabilities, Jini uses
more Java types. The Jini Lookup Attribute system is more
closely like our use of RDF, but we believe the RDF model
is more flexible due to the ability to perform deeply struc-
tured queries. Jini’s Lookup Attribute system does not sup-
port queries on subattributes of attributes.

Hive does not currently support Jini’s leasing or transac-
tions, but probably should. Transactions will be useful to
allow agents to enter into multi-message communications
with a guarantee of consistency. Leasing will be a useful
hook for allowing Hive agents to explicitly negotiate their
relationships; an agent can express the decision to work
with another agent for a limited period of time as a lease.

As a practical matter, Hive and Jini could be integrated
by encapsulating a Jini service as a Hive shadow or making
a Hive agent present itself as a Jini service.

Finally, Hive has so far stayed inside the Media Lab net-
work. But in every decision we have designed Hive to ex-
pand beyond that, to work across the Internet. The abstrac-
tions inherit in the ecology of distributed agents gives us
a conceptual model for organizing a worldwide network of
interacting processes.

8. Conclusions

We have presented Hive, an implementation of an ecol-
ogy of distributed agents. We have taken many ideas from
agents research and put them together into a coherent sys-
tem, an application infrastructure for Things That Think.
We have proven that agents are a good abstraction for build-
ing distributed systems. And we have found that ad-hoc
agent communication along with an ontology mechanism

is sufficient to build useful systems. Finally, we believe
mobile agents are a useful abstraction, but that they are
more applicable to larger distributed systems. Agents are
a fundamental building block for coherent distributed sys-
tems; ecologies of distributed agents can grow to inhabit our
global network of millions of computers and Things That
Think.

Acknowledgements

We thank Todd Papaioannou, Marc Hedlund, Brad
Rhodes, Manor Askenazi, and the ASA/MA reviewers for
their helpful comments.

References

[1] Gul Agha. Abstracting Interaction Patterns: A Program-
ming Paradigm for Open Distributed Systems. In E. Najm
and J. B. Stefani, editors,Formal Methods for Open Object-
based Distributed Systems. Chapman & Hall, 1997. http:
//osl.cs.uiuc.edu/Papers/fmoods.ps

[2] Ken Arnold, Ann Wollrath, Bryan O’Sullivan, Robert Schei-
fler, and Jim Waldo.The Jini Specification. Addison-Wesley,
1999. http://www.sun.com/jini/

[3] Joachim Baumann. Mobility in the Mobile Agent
System Mole. In CaberNet: 3rd Plenary Work-
shop, 1997. http://www.informatik.uni-stuttgart.de/ipvr/vs/
Publications/1997-baumann-05-paper.html

[4] Ronald Bourret, John Cowan, Ingo Macherius, and Si-
mon St. Laurent. Document Definition Markup Lan-
guage. Technical report, W3C, 1999. http://www.w3.org/TR/
NOTE-ddml

[5] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Ex-
tensible Markup Language (XML). Technical Report PR-
xml-971208, W3C, December 1997. http://www.w3.org/TR/
PR-xml-971208

[6] Jonathan Bredin, David Kotz, and Daniela Rus. Market-
based Resource Control for Mobile Agents. InProceedings
of the 1998 International Conference on Autonomous Agents,
1998. ftp://ftp.cs.dartmouth.edu/TR/TR97-326.ps.Z

[7] D. Chess, C. Harrison, and A. Kershenbaum. Mobile Agents:
Are they a Good Idea? In Jan Vitek and Christian Tschudin,
editors,Mobile Object Systems: Towards the Programmable
Internet, volume 1222 ofLecture Notes in Computer Sci-
ence. Springer-Verlag, 1997. http://www.research.ibm.com/
massive/mobag.ps

[8] Grzegorz Czajkowski and Thorsten von Eicken. JRes: A
Resource Accounting Interface for Java. InProceedings
of 1998 ACM OOPSLA Conference, 1998. http://www.cs.
cornell.edu/slk/papers/oopsla98.ps

[9] Sean M. Dorward, Rob Pike, David Leo Presotto, Den-
nis M. Ritchie, Howard W. Trickey, and Philip Winterbot-
tom. The Inferno Operating System.Bell Labs Tech-
nical Journal, Winter 1997. http://www.lucent.com/ideas2/
perspectives/bltj/winter97/paper01/index.html



[10] Richard E. Fikes and Nils J. Nilsson. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. InReadings in Planning, pages 189–208. 1971.

[11] Tim Finin, Yannis Labrou, and James Mayfield. KQML as
an agent communication language. In Jeff Bradshaw, editor,
Software Agents. MIT Press, 1997. http://www.cs.umbc.edu/
agents/introduction/kqmlacl.ps

[12] Neil Gershenfeld.When Things Start to Think. Henry Holt
& Company, 1999. ISBN: 0805058745. http://www.media.
mit.edu/physics/publications/books/ba/

[13] Matthew K. Gray. Infrastructure for an Intelligent Kitchen.
Master’s thesis, MIT Media Lab, 1999.

[14] Robert S. Gray.Agent TCL: A Flexible and Secure Mobile-
agent System. PhD thesis, Dartmouth College, 1997. http:
//actcomm.dartmouth.edu/�rgray/thesis/thesis.ps.Z

[15] Hiroshi Ishii and Brygg Ullmer. Tangible Bits: Towards
Seamless Interfaces between People, Bits and Atoms. In
Proceedings of CHI 97, pages 234–241. ACM Press, March
1997.

[16] David Kotz, Robert Gray, Saurab Nog, Daniela Rus, Sumit
Chawla, and George Cybenko. Agent TCL: Targeting the
Needs of Mobile Computers.IEEE Internet Computing,
1(4):58–67, July/August 1997. http://computer.org/internet/
ic1997/w4058abs.htm

[17] Danny B. Lange and Mitsuru Oshima.Programming and
Deploying Java Mobile Agents With Aglets. Addison-
Wesley, 1998. ISBN: 0201325829.

[18] Danny B. Lange and Mitsuru Oshima. Seven Good
Reasons for Mobile Agents. Communications of the
ACM, 42(3):88–89, March 1999. http://www.acm.org/pubs/
citations/journals/cacm/1999-42-3/p88-lange/

[19] Ora Lassila and Ralph Swick. Resource Description Frame-
work (RDF) Model and Syntax Specification. Techni-
cal report, W3 Consortium, 1998. http://www.w3.org/TR/
WD-rdf-syntax/

[20] Mark S. Miller and K. Eric Drexler. Markets and Compu-
tation: Agoric Open Systems. In B. A. Huberman, editor,
The Ecology of Computation, pages 133–176. Elsevier Sci-
ence Publishers, 1988. http://www.webcom.com/�agorics/
agorpapers.html

[21] Nelson Minar. Designing an Ecology of Distributed
Agents. Master’s thesis, Massachusetts Institute of Technol-
ogy, September 1998. http://www.media.mit.edu/�nelson/
research/masters-thesis/

[22] M. Ranganathan, Anurag Acharya, Shamik Sharma, and
Joel Saltz. Network-aware Mobile Programs. InPro-
ceedings of the 1997 USENIX Technical Conference,
pages 91–104, 1997. http://www.cs.umd.edu/�acha/papers/
usenix97-submitted.html

[23] Eric S. Raymond. The Cathedral and the Bazaar, 1997.
http://www.tuxedo.org/�esr/writings/cathedral-bazaar/

[24] Bradley J. Rhodes, Nelson Minar, and Josh Weaver. Wear-
able Computing Meets Ubiquitous Computing: Reaping the
Best of Both Worlds. InProceedings of the International
Symposium on Wearable Computers (ISWC ’99), October
1999. http://www.media.mit.edu/�rhodes/Papers/wearhive.
html

[25] Jaane Saarela. SiRPAC — Simple RDF Parser and Compiler,
1999. http://web1.w3.org/RDF/Implementations/SiRPAC/

[26] Earl D. Sacerdoti. The Nonlinear Nature of Plans. InInter-
national Joint Conferences on Artificial Intelligence (IJCAI),
1975.

[27] Tomas Sander and Christian F. Tschudin. Protecting mo-
bile agents against malicious hosts. In Giovanni Vigna,
editor, Mobile Agents and Security, volume 1419 ofLec-
ture Notes in Computer Science, chapter 4, pages 44–61.
Springer-Verlag, 1997. ISBN: 3540647929. http://www.icsi.
berkeley.edu/�tschudin/

[28] Thad Starner, Steve Mann, Bradley Rhodes, Jeffrey Levine,
Jennifer Healey, Dana Kirsch, Rosalind W. Picard, and Alex
Pentland. Augmented Reality Through Wearable Com-
puting. Presence (Special Issue on Augmented Reality),
6(4), 1997. http://wearables.www.media.mit.edu/projects/
wearables/

[29] Markus Straer, Joachim Baumann, and Fritz Hohl. Mole –
A Java Based Mobile Agent System. In2nd ECOOP Work-
shop on Mobile Object Systems, pages 28–35, Linz, Aus-
tria, July 1996. http://www.informatik.uni-stuttgart.de/ipvr/
vs/projekte/mole/ECOOP96.ps.gz

[30] Giovanni Vigna.Mobile Agents and Security, volume 1419
of Lecture Notes in Computer Science. Springer-Verlag,
1997. ISBN: 3540647929.

[31] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall.
A Note on Distributed Computing. In Jan Vitek and Chris-
tian Tschudin, editors,Mobile Object Systems: Towards
the Programmable Internet, volume 1222 ofLecture Notes
in Computer Science, pages 49–64. Springer-Verlag, Hei-
delberg, April 1997. http://www.sunlabs.com/techrep/1994/
abstract-29.html

[32] Mark Weiser. The Computer for the Twenty-First Cen-
tury. Scientific American, pages 94–101, September 1991.
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

[33] Craig Wisneski. The Design of Personal Ambient Displays.
Master’s thesis, MIT Media Laboratory, 1999.

[34] M. J. Wooldridge and N. R. Jennings. Agent Theories, Ar-
chitectures and Languages: A Survey. InIntelligent Agents,
pages 1–39. Springer-Verlag, 1994.

[35] Intel Play. http://www.intelplay.com

[36] Javares mailing list. http://gee.cs.oswego.edu/dl/javares/

[37] Voyager Core Technology. http://www.objectspace.com/
products/voyager/core/index.html


