
Things That Think project (www.media.
mit.edu/ttt), which attempts to add comput-
ing power to everyday objects, they’ve
developed Hive, a distributed-agent plat-
form for controlling appliances.

Hive ecology
Nelson Minar and his colleagues designed

Hive (www.hivecell.net) to be an “ecology of
distributed agents.” That is, applications are
formed out of the actions and interactions of
agents spread over a network. These agents
and other Hive components form a decentral-
ized system. The Media Center researchers
believe that such decentralization is necessary
to let the system adapt and grow.

Hive is basically a set of Java libraries.
Its three main components are cells, shad-
ows, and agents.

Cells are Java programs that act like
servers. They are the network nodes, pro-
viding a home for agents and shadows.
They enable agents to communicate and let
agents access devices connected to them
(say, a microphone for voice input and a
drink mixer for output). Because of mem-
ory and computational requirements, cells
run on desktop computers. However, they
eventually could reside on other devices

attached to the network.
Shadows are software interfaces (APIs)

to the devices that are attached to a cell. A
shadow provides both access and security;
agents must access a device through its
shadow. Shadows, like cells, are static.

Agents are autonomous, mobile code
comprising “a Java object, an execution
thread, a remote interface for network com-
munication, and a self-description.”1 They
can act as intermediaries for shadows, pro-
vide software services, or manage other
agents. Although each agent resides in a
particular cell, agents can travel to other
cells to conduct their business by interacting
with other agents. For example, a micro-
phone agent could deliver microphone ser-
vice to a cell containing an agent that han-
dles natural language processing.

An agent learns about another agent by
accessing that agent’s syntacticand seman-
tic descriptions. The syntactic description
is that agent’s Java type. The semantic
description adds information such as the
agent’s location, owner, and capabilities.
This description is based on an ontology
that uses the World Wide Web Consor-
tium’s Resource Description Framework.
(However, according to Raffi Krikorian,

who has taken over the Hive project now
that Minor has gone off to start his own
company, they’ve been working on a ver-
sion that is based on XML instead of RDF.)
Agents can change their descriptions at
runtime, thereby providing flexibility. 

One specific type of agent is the graphical
user interface (see Figure 1). The GUI lets the
user both monitor and control the Hive net-
work. The display uses icons to represent the
agents and arrows to represent agent com-
munication paths. Users can change the net-
work and applications by adding or deleting
icons and redrawing paths.

If you think Hive sounds like Sun Micro-
system’s Jini (www.sun.com/jini), you’re
right. Both are Java-based systems for cre-
ating flexible networks of devices. How-
ever, Jini does not separate the functionality
of agents and shadows. Hive’s developers
believe that such separation “gives Hive a
useful abstraction barrier between local,
trusted code and networked, untrusted
code.”1 Also, Hive is more location-depen-
dent; Jini does not contain equivalents to
cells. Minar and his colleagues think that
this makes Hive more scalable. In addition,
Jini provides only single-hop mobility;
Hive agents have multihop mobility.
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Distributed agents

Agents that move for
things that think
Dennis Taylor, dtaylor@computer.org

Want your home bar to mix and serve you a dry martini
(“shaken, not stirred, please”) as you sit in your recliner,
watching “Buffy the Vampire Slayer”? Of course you do. If 
the researchers at the MIT Media Lab have their way, your
wish could be granted sooner than you think. As part of the 
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Cooking with smarts

Matthew Gray and his colleagues at the
Media Lab have used Hive to construct a
networked kitchen.2 (See the sidebar for
some other Hive applications,including
Counter Intelligence, a different intelligent-
kitchen project.) Their goal is a kitchen
where the refrigerator and storage areas
know their contents and know when some-
thing is needed. The appliances would order
groceries and supplies and help the cook
plan and prepare meals.

To show their project’s potential,they
constructed a demonstration system and
implemented a recipe scheduler for making
peanut brittle. The system employed three
types of Hive agents. A recipe agent over-
saw the recipe’s execution and controlled
manager agents,which managed the ingre-
dients,the appliances,and user interaction.
Device agents managed the appliances,
which included tag readers for keeping an
inventory of the groceries and supplies,a
microwave oven,a scale, a speech output
system,and a visual display.

The scheduler determined the best
sequence in which to prepare the peanut
brittle, given a recipe. The recipe included
the steps (recipe steps don’t always have to

follow a particular order),their interdepen-
dencies,and the necessary ingredients and
supplies. Because Gray and his colleagues
were only demonstrating one recipe, they

did not integrate the recipe scheduler with
the rest of the demonstration system.

According to Gray, using Hive made
their system more flexible.2 For example, a

Figure 1. Hive’s GUI. Icons represent agents, and arrows represent agent communication paths. Users can change the
network and applications by adding or deleting icons and redrawing paths. For a detailed explanation of this image,
see www.hivecell.net/screenshot.html. (Image courtesy of MIT Media Lab.)

Some Hive applications
• Automatic diary: As a user moves through a building, radio beacons

transmit the user’s location to his or her wearable computer. Infor-
mation entered into the computer is automatically “stamped”with
its date, time, and location.1

• Counter Intelligence(www.media.mit.edu/ci):This is a five-year
program to investigate future kitchen technologies. It incorporates
such projects as Mr. Java,an intelligent coffee machine, Scents
Sense, which combines a digital nose with an oven,and Visiphone,
which combines graphics with telephone conversations.

• Honey, I Shrunk the CDs(www.media.mit.edu/pia/Research/CDs/
index.html): Poker chips contain a song title and a radio frequency
ID tag. When a user chooses one of the chips and drops it on a table
with an RF tag reader, an MP3-based jukebox plays that song.2,3

• Impulse(agents.www.media.mit.edu/groups/agents/projects/impulse):
Agents running on wireless mobile devices conduct negotiations on
behalf of buyers and sellers.

• Personal Ambient Displays (tangible.media.mit.edu/projects/
Personal_Ambient_Disp/Personal_Ambient_Disp.html):These
small devices subtly transmit information by getting cold or hot,
moving, vibrating, or changing shape. They can be connected
through Hive to activate each other or to respond to input from
other sources.2

• Personal locator: A computer keeps track of the location of some-
one with a wearable computer. If the user so desires,the computer
can let other people know his or her location.1

• Personal theme music: When the user enters a room,his or her

wearable sends a signal to a computer in that room,which then
plays a song that user has chosen.1

• Remembrance Agents(rhodes.www.media.mit.edu/people/rhodes/
RA): These programs send the user of a wearable computer infor-
mation relevant to that user’s location. A possible application could
be an automated tour guide for a museum.1
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polyphonic tag reader (which can read sev-
eral tags simultaneously) that they origi-
nally planned to use was unavailable, so
they substituted several other tag readers
for it without changing any code. He also
believes that the system implementation
was simpler with Hive than without it,and
that Hive’s structure allows parts of this
system to be used with others.

What’s next for Hive?
Krekorian sees Hive as the basis for a

new way of creating large computer sys-
tems. These systems would go beyond
traditional software reuse, exploiting exist-
ing resources over a network to create new
applications. For example, he hypothesizes
two “Hi ve-ified” devices:a child’s interac-
tive stuffed toy and a home security sys-
tem. Without restarting the system,a user
could add another Hive agent that links the
two devices,creating an application that
would use the toy to tell the child that his
mom was home from work when the secu-
rity system sensed her car going into the
garage.

Hive’s developers envision an Internet
buzzing with Hive agents. However, before
that happens,they need to deal with several
issues. For example, they need to finish
Hive’s mobility layer. They also need to
increase Hive’s stability so that agents can
run persistently. In addition, they need to
improve security—specifically, protecting
hosts and agents from other hosts and
agents. Finally, they’d like some help.
Toward that end, they’ve released open-
source code for Hive (www.hivecell.net/
download.html). Personally, I’m looking
forward to the day when my kitchen whips
me up a chocolate malt and a homemade
pizza while I’m playing pinochle. 
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Robotics

Honeybees to
UAVs: doing the
waggle walk
Dick Price, dprice@computer.org

Ongoing research at the Australian
National University (ANU) in Canberra
shows that honeybees possess a sort of
visual odometer to gauge how far they have
flown, which helps them direct their hive
mates to food sources. Aside from its
importance for the study of insect behavior,
this finding might well have
an important impact on the
development of unmanned
flying vehicles.

According to Mandyam
Srinivasan,the bioengineer
leading this investigation,
honeybees perform varying
dances to communicate with
other bees about the distance
and direction to food sources.
For the type of honeybee
used in this work, a round
dance indicates that the food
is within about 50 meters
(see Figure 1). Beyond that
distance, the bees switch to
a waggle dance, with the
dance lasting proportionally
longer for more distant food
sources and shifting axially
according to the sun’s posi-
tion in the sky to communi-
cate direction. 

Animal behavioralists
once thought that bees esti-
mate distances by gauging
the energy they expend trav-
eling back and forth—the
longer the bee flew, the
longer its dance. But tail or
headwinds would make such
estimates highly unreliable,
so Srinivasan and his col-
leagues at ANU’s Centre for
Visual Science (cvs.anu.
edu.au) have found that a
very different mechanism is
at work. As reported recently
in Science(4 February 2000,
pp. 851–853),they argue

instead that the bees gauge distance trav-
eled by the amount of image motion they
experience during the trip. Because new
bees will tend to follow the same route as
the experienced forager, this sort of visual
odometry would prove to be quite reliable
regardless of wind conditions.

Fooling Mother Nature
To test their theory, Srinivasan’s group

trained marked honeybees to forage a feeder
containing sugar solution positioned in a
narrow, well-lit wooden tunnel (see Figure
2). When the tunnel’s surface was covered
with a visually intense random texture, the
bees would be fooled into believing they had
flown much further than they actually had.
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Figure 2. Closed at one end so the bees have only one point of entry, the
tunnel is covered with black insect-screen cloth to permit observation and to
give the bees a view of the sky. The test tunnel measures 6.4 meters long, 11
cm wide, and 20 cm high. (Photograph by Teresa Belcher, Research School of
Biological Sciences, ANU.)

Figure 1. Honeybee (Apis mellifera lingustica Spinola) entering the test
tunnel. Canberra scientists have been studying honeybee behavior for almost
15 years using hives on the ANU campus. (Photograph by Jeff Wilson,
Research School of Biological Sciences, ANU.)
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In one the series of related experiments re-
ported in Science, for instance, their 441-
ms-long waggle dance indicated a flight of
184 meters outdoors,when they had actually
flown just 12 meters—six meters outdoors
and six meters down the tunnel. Srinivasan
surmises that the tunnel forced the bees to
fly closer to nearby objects than they would
ordinarily do in flying outdoors. “And, as
you fly along a straight line,” he says,
“images that are very close to you provide 
a very great image velocity, whereas objects
that are further away don’t appear to move
nearly so much.” By flying so closely to 
the patterned surface, they received visual
motion cues equivalent to a much longer
trip. Furthermore, when the tunnel’s walls
were covered with horizontal lines running
parallel to their line of light,thus creating
negligible image motion cues,the bees more
accurately indicated the distance travelled
with their round dance.

From bees to UAVs
Srinivasan’s group is working with fund-

ing from DARPA’s Controlled Biological
and Biomimetic Systems group under Alan
Rudolf to apply these and related results to
their work with unmanned autonomous
vehicles. Currently, in trying to see how
robust this visual odometry will be for
robotic vehicles,they are encouraged by
initial results using a land-based robot.
“Certainly, it’s immune to headwinds or
tailwinds,which you’ve got to worry about
with other methods.”

Earlier work by Srinivasan showed that
bees tend to fly down the middle of the
tunnel by balancing the optical flow from
the two sides,rather than by using stereo
mechanisms traditionally used in robotics.
“They use very low-level image motion
computing mechanisms that are a easier
algorithmically to do in real time than,for
example, using stereovision,which in-
volves solving the correspondence prob-
lem,” he says. “There’s no object recogni-
tion as such going on. There are just very
low-level image-motion cues being picked
up.” With these findings,ANU researchers
have developed robot navigation systems
that require much less computational
power—just that of a standard laptop—
than would otherwise be needed.

Srinivasan and his colleagues are also
working on a panoramic vision system
that emulates insect vision for use in heli-
copters. Rather than attempting to develop

an insect-like compound eye, they use
a specially shaped reflector that works
with a single camera to capture a pan-
oramic view for stabilizing the vehi-
cle’s flight and improving landings and
takeoffs.

Insect landing strategies is another
area of interest at ANU. Traditional
experiments involve insects landing
head on:By measuring the rate at which
the surface expands,the insect would
gauge its deceleration and extend its
legs appropriately. A more interesting
problem is the grazing landing on a hor-
izontal surface, which is a more typical
landing strategy for a UAV.

“Under those conditions,the looming
cues are not very strong, as the insect is
basically moving almost parallel to the
surface,” he says. The animal mainly
experiences translational flow, which
turns out to again involve a fairly sim-
ple algorithm. “They keep the angular
velocity of the image in the eye con-
stant as they approach the ground, so
the lower they are, the slower they’re
flying automatically.” Consequently,
when the insect finally touches down, it
is flying with zero forward velocity—
without having to do complex ranging. 

“The trajectory then should be an
exponential time curve, which is exactly
what you get,” he says. “We’re currently
trying to put that into a flying vehicle to
see how well it works.”

To biology and back
Trained originally as an electrical

engineer, Srinivasan was intrigued by
the capabilities of insects’relatively
small brains while doing his PhD at
Yale. “They don’t have a lot of cogni-
tion, the way we do,but in the low-level
aspects of vision,they have everything
it takes. If you watch a fly land on a
teacup,for instance, you find that it does
a very nice job.”

The knowledge flow in Srinivasan’s
work goes both ways: findings from
insect research—and from work with
wallabies,birds,crabs,and humans that
others are undertaking at his institute—
feed into robotics work, but also flow
back in the other direction. “If the robot
doesn’t work the way we think it
should, that puts us back on the drawing
board as far as the biology is concerned
as well.”
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Web agents

Shopbots: help
or hindrance?
David Clark, dwclark@earthlink.net

Generally speaking, abot is a software
component that does the work of a human
or another bot (or agent). In terms of shop-
ping, this can mean a Web portal (shopbot)
that can display product price and availabil-
ity from multiple online vendors. The hype
surrounding shopbots asserts that they can
help the online shopper make educated pur-
chases. But often shopbots have only deliv-
ered prices,without other pertinent infor-
mation,such as contrasting features and
detailed specifications—leaving the shop-
per informed, but not necessarily educated.

Market research has indicated that Web
buyers like to comparison shop,instead of
relying on high-profile or random sites. Conse-
quently, as e-commerce flourishes,so does the
demand for comprehensive,useful shopbots. 

To the future and beyond
The first shopbots Web buyers used were

relatively simple, in most cases they spidered
vendor’s sites for basic (mostly price) infor-
mation. The information they discovered was
limited and the process could tie up band-
width and servers,causing resentment among
vendors (see “Shopbots Become Agents for
Business Change,” Computer, Feb. 2000).
Today, instead of spidering, many shopbot
developers either arrange with cooperative
vendors to access their database schema (in
return for the likelihood of increased visitors
and payments),or shopbot sites use sophisti-
cated parsing techniques and scripts to train
their bots to gather more robust information
from the HTML on vendors’product pages.

Neither approach delivers on the ultimate
promise of shopbots. One day, according to
Steve White of IBM’s Institute for Advanced
Commerce, shopbots will automatically
engage in complex transactions on behalf of
their human owners—or on other agents. 

Attempting to deliver these shopbots of
the future, industry and university research
groups are scrambling to develop bot tech-
nology that is effective and autonomous,
without introducing economic chaos. As one
commercial example of this kind of research,
take Rob Guttman and his colleagues’work

at MIT. Their work on normalization retrieval
forms the technical basis for Frictionless
Commerce, a shopbot engine used by high-
traffic Web sites such as Lycos. According to
Guttman,the company’s CTO, the commer-
cial version of this ontology-based shopbot
offers extended function over most current
shopbots,giving shoppers the ability to make
apples-to-apples comparisons. 

Data collection is the key
“We’re able to parameterize product

details to a rather low level,” says Guttman.
The company employs teams of informa-
tion architects who develop ontologies for
each of the product domains served by the
companies who use the Frictionless bot
engine. Their job is to define the common
feature sets and the semantics used by
manufacturers,vendors,and buyers of a
particular product category—digital cam-
eras,for example. This compiled body of
terms and its semantic relationships are
then used to build templates that spiders fill
in with data collected from the Web to cre-
ate a rich product knowledge base.

On the front end, Frictionless uses a value-
comparison engine—which uses technology
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Voice recognition

Voice recognition technology
is starting to add up
Shani Murray, smurray@computer.org

Henry “Buddy” Gray, a mathematics and statistics professor
at Southern Methodist University (hgray@mail.smu.edu),has
developed MathTalk—a software program that turns words into
equations. Gray originally created his voice recognition pro-
gram to save keystrokes,but he soon realized that his software
could help not only other professional mathematicians,but also
disabled or blind people.

“Instead of you learning the computer’s language, it learns
yours,” explains Gray, who now works in collaboration with
Metroplex Voice Computing of Arlington,Texas (www.
mathtalk.com). MVC offers several different products,all
based on Gray’s initial program. MathTalk/Scientific Notebook
uses DragonDictate and Scientific Notebook and can be used
for all levels of math. It recognizes over 2,000 voiced math
commands,including formulas such as the quadratic formula,
3D wave equation, and Bessel function. “You say ‘quadratic
formula,’ and you save 30 to 40 keystrokes,” says Gray. He adds
that the voice recognition is very good because it’s directed
toward phrase commands,decreasing the use of smaller words
such as “in” and “to,” which are easily misunderstood. The pro-
gram also has graphing capabilities.

While MT/SN helps paraplegics and quadriplegics,Gray’s
MathBrailleTalk aids instructors of visually impaired students
by translating mathematical formulas and embossing them into
Braille. Gray is also working on MathTalk for the Visually

Impaired. MT/VI users type in the mathematical equations,the
program reads them back, and the users can then correct the
program with commands such as “erase”or “wrong word.” In
addition, MT/VI will assist both students and teachers with its
ability to print the equations in either Braille or regular text.
According to Jason Balusek,a blind student earning his mas-
ter’s degree in mathematics at Stephen F. Austin State Univer-
sity, “This will open a lot of doors in math for blind people.”

ArithmeticTalk, geared towards grade-school students,will
also strengthen the prospects for disabled students. Says Gray,
“I r ealized that most disabled children don’t even get to alge-
bra,which cuts out their opportunities.” Using MS Word97,the
program better introduces these children to mathematics. The
students can tell it to add, subtract,multiply, and divide, and the
program will then show them their work. 

Yet another potential program stemming from Gray’s initial
software is aimed at those with speech impairments. Kathy
Whipple (kathy_whipple@baylor.edu),chair of the Department
of Communication Sciences and Disorders at Baylor University,
has applied for a grant and hopes to use Gray’s technology for
people with good cognitive skills but poor articulation—for those
who have suffered a stroke or have a tumor, for example. An
inflection in a person’s voice or a series of noises could indicate
various needs and trigger certain icons representing anything
from food to entertainment. Whipple feels such a voice-activated
communication system—as opposed to the often cumbersome
and awkward point-and-click models—“is desperately needed.”
She adds,“The technology is clearly there. We’re not far away.”
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based on knowledge-representation theory
research—that analyzes the product knowl-
edge base according to a shopper’s input. In
practice, the Frictionless bot leads shoppers
through a series of questions,which helps
them focus on priorities,ultimately building
a list of priorities. After personal priorities
are established, the shopbot displays a Web
page that lists a selection of similar products
(or the same product sold by different ven-
dors),sorted according to the buyer’s estab-
lished priorities. In the works now is a sell-
bot that can could interact with shopbots to
negotiate price and other features based on
customer preferences. 

Ontology means autonomy
Meanwhile, from an academic angle,

Katia Sycara’s research group at Carnegie
Mellon University also takes the ontological
approach to give shopbots (and other types of
agents) the ability to operate autonomously.

Her group vision is a future for agent
interactivity that includes what she calls
middle agentsthat act as agent registries. In
this model,a company or individual puts a
shopbot on the network, and the bot regis-
ters its services or submits a request with the
one or more existing middle agents it knows
how to find. The middle agents would then
know how to either advertise that bot’s ser-
vices or how to locate a bot that can supply
the requested service or product.

Sycara compares the infrastructure that
would support middle agents as similar in
concept to Sun’s “spontaneous networking”
Jini,which provides protocols and services
for resource lookup in LAN environments.
However, not only would the infrastructure
for her middle-agent model need to work on
a WAN, but it would require a more powerful
and syntactically forgiving matching mecha-
nism than simple lookup tables provide.

“That’s where it gets interesting,” says
Sycara. The agents need to be able to de-
scribe the notionor concept of their capa-
bility; they need to be able to match ser-
vices with service requests—possibly over
a broad range of terms. For that, her group
has developed Larks (Language for Adver-
tisement and Request for Knowledge Shar-
ing),an agent capability description lan-
guage. Agents use this language to match
service-requesting agents with service-pro-
viding agents. Requests are filled when the
provider’s advertisement sufficiently resem-
bles the requested service’s description.

Larks uses information retrieval and AI

techniques—along with distributed object
programming—to discover syntactical and
semantic similarity among agent capability
descriptions. In a typical configuration,a
middle agent’s Larks-based matching engine
would use five different filters,one each for
context matching, word-frequency profile
comparison,similarity matching, signature
matching, and constraint matching. Users
could configure their bots by changing filter
parameters to reach satisfactory performance
levels. In other words,you could set your
shopbot to find product information that was
neither too general nor too specific.

Bot behavior
As bots become more efficient in terms

of autonomously finding information
they’ ll stimulate competition,giving buy-
ers more choices. But,as Sycara specu-
lates,if prices drop below profitability,
vendors will be forced out of business,or
perhaps forced into forming cartels and
price-fixing schemes to stabilize prices.

Speculation about what effect the intro-
duction of billions of shopbots will have on
our already rapidly changing economic
models is the subject of Jeff Kephart’s work
as manager of IBM’s agents and emergent
phenomena group (part of IBM’s Institute
for Advanced Commerce, www.research.
ibm.com/infoecon). Kephart’s team is devel-
oping prototypes of an agent economy and
its supporting infrastructure. The program-
mers built various shopbot actors(buyers,
sellers,and several types of intermediaries),
each of which you can modify by plugging
in pricing-algorithm and negotiation-proto-
col components. The team’s first prototype
economy comprised protobots that modeled
the book-selling market.

“It’ s interesting to see how a bunch of
really simple individual agents,each cre-
ated by a different human programmer,
which have a little bit of infrastructure and
the usual magic of economic incentives in
common,can produce a market or econ-
omy that actually works,” says Kephart.

However, in some experiments with sim-
ple bot prototypes,bots create cyclical price
wars. In these cases,the team observes that
prices are driven down over a period of
time, revert to a high value, and then start
decreasing again. Price wars happen when
seller agents have a lot of information about
buyers and also have current information
about other seller’s prices. “You can see that
price wars occur because the bots aren’t

taking into account the likelihood that other
sellers are going to retaliate,” explains
Kephart. So the obvious solution,he says,is
to give agents foresight. “This needs to hap-
pen far short of the Turing challenge—it
has to be a relatively simple solution.”

The need for a simple solution led the
research team to use a technique called q-
learning, a form of reinforcement learning
theory. Using q-learning algorithms,the bot
can be taught that the ultimate goal is to opti-
mize the future discounted profit as it’s deter-
mined over a series of steps,not optimize the
immediate profit. This “learning” is accom-
plished because, theoretically, at each estab-
lished time interval, the bot receives reinforce-
ment information that motivates it to evolve in
the desired behavior.

But there’s a hitch. Q-learning theory was
developed for agents that are interacting in a
static environment,says Kephart, and if
these other bots are continuously and simul-
taneously learning and updating, they’re
forming distinctly nonstationary environ-
ments. That begs the theoretical question:
Will the bots’price-setting behaviors con-
verge, modeling flatter price fluctuations or
will it r esult in a whole lot of tail chasing?

Kephart and his team are working on the
answers to this and other questions. They
strongly believe that we need to understand
how autonomous interactive bots will behave
by observing them in the laboratory before
we turn them loose on the world economy,
and common sense would agree with them.

Ultimately, the current bot researchers
and developers aren’t just trying to model
the world economy, they’re trying to auto-
mate it. Kephart echoes many who say that
information is what drives the world econ-
omy. Current prosperity is often attributed
to the rise of the Internet and e-commerce,
but it’s a result of information flowing bet-
ter. Information that’s not in the right place
at the right time is inefficient. What bots
will do for us,say these researchers,is
eliminate the inefficiencies.

Next time we shop for a Pokémon or an
MP3 player on the Internet,we’ll have to
remember we’re really shopping for infor-
mation. And increasingly, the value we pay
for in our shopping experience will be the
information delivered—quickly and trans-
parently—by shopbots. 


