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Distribtuted-agents

Agents that move for
things that think

Dennis Taylor, dtaylor@computer.org

Want your home bar to mix and serve you a dry martini

(“shaken, not stirred, please”

watching “Buffy the Vampire

the researchers at the MIT Media Lab have their way, your
wish could be granted sooner than you think. As part of ther

Things That Think project (www.media.
mit.edu/ttt), which attempts to add compu
ing power to everyday objects, they've
developed Hive, a distributed-agent plat-
form for controlling appliances.

Hive ecology

Nelson Minar and his colleagues design
Hive (www.hivecell.net) to be an “ecology o
distributed agents.” That is, applications are
formed out of the actions and interactions @
agents spread over a network. These agen
and other Hive components form a decentr;
ized system. The Media Center researcher,
believe that such decentralization is necess
to let the system adapt and grow.

Hive is basically a set of Java libraries.
Its three main components arels shad-
ows andagents

Cells are Java programs that act like
servers. They are the network nodes, pro
viding a home for agents and shadows.
They enable agents to communicate and
agents access devices connected to then
(say, a microphone for voice input and a
drink mixer for output). Because of mem-
ory and computational requirements, cell
run on desktop computers. However, they
eventually could reside on other devices

) as you sit in your recliner,
Slayer™? Of course you do. If

attached to the network.

t- Shadows are software interfaces (APIs
to the devices that are attached to a cell.
shadow provides both access and securi
agents must access a device through its
shadow. Shadows, like cells, are static.

Agents are autonomous, mobile code
eccomprising “a Java object, an execution

f thread, a remote interface for network con
munication, and a self-descriptiohThey

f can act as intermediaries for shadows, prg

tsvide software services, or manage other

alagents. Although each agent resides in a

s particular cell, agents can travel to other

acells to conduct their business by interacti
with other agents. For example, a micro-
phone agent could deliver microphone ser
vice to a cell containing an agent that han-
dles natural language processing.

An agent learns about another agent b

- accessing that agensgntacticandseman-
tic descriptions The syntactic description

lés that agent’s Java type. The semantic

n description adds information such as the
agent’s location, owner, and capabilities.
This description is based on an ontology

s that uses the World Wide Web Consor-
tium’s Resource Description Framework.
(However, according to Raffi Krikorian,

Features Editor: Crystal R. Chweh, cchweh@computer.org

stirred

who has taken over the Hive project now

) that Minor has gone off to start his own

Acompany, they've been working on a ver-

ysion that is based on XML instead of RDF.
Agents can change their descriptions at
runtime, thereby providing flexibility.

One specific type of agent is the graphical

user interface (see Figure 1). The GUI lets th

-user both monitor and control the Hive net-
work. The display uses icons to represent the

- agents and arrows to represent agent com-
munication paths. Users can change the net
work and applications by adding or deleting
icons and redrawing paths.

ng If you think Hive sounds like Sun Micro-
system’s Jini (www.sun.com/jini), you're

- right. Both are Java-based systems for cre-
ating flexible networks of devices. How-
ever, Jini does not separate the functionalit

y of agents and shadows. Hive’s developers
believe that such separation “gives Hive a
useful abstraction barrier between local,
trusted code and networked, untrusted
code.* Also, Hive is more location-depen-
dent; Jini does not contain equivalents to
cells. Minar and his colleagues think that
this makes Hive more scalable. In addition,
Jini provides only single-hop mobility;
Hive agents have multihop mobility.
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Cooking with smarts

Matthew Gray and his collegues athe
Media L& have used Hie to constuct a
networked kitchen? (See the sidzar for
some other Hie gplications,including
Counter Intellignce a different intelligent-
kitchen poject.)Their goal is a kithien
whete the efrigerator and staege aeas
know their contents and kmowhen some
thing is neededrhe gpliances wuld oder
groceies and supplies and help the cook
plan and pgpare meals.

To shav their pioject’s potentialthey
constucted a demonstion system and
implemented aacipe sheduler 6r making
peant biittle. The system empj@d thee
types of Hve ayents A recipe gent wver-
sav the lecipes execution and contiled
manaer agents,which manged the inge-
dients,the gpliancesand user intexction.
Device agents manged the ppliances,
which induded tay reades for kegping an
inventoly of the goceiies and supplies,
microwave o/en,a scalea speels output
systemand a visual dispia

The sbhieduler detenined the best
sequence in hich to pepare the peant
brittle, given a ecipe The ecipe intuded
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Figure 1. Hive’s GUI. lcons represent agents, and arrows represent agent communication paths. Users can change the
network and applications by adding or deleting icons and redrawing paths. For a detailed explanation of this image,

see www.hivecell.net/screenshot.html. (Image courtesy of MIT Media Lab.)

follow a paticular oder),their intedepen
denciesand the necessaingredients and
supplies. Because &rand his collegues

did not intgyrate the ecipe sbeduler with
the est of the demonstion system.
According to Gay, using Hive made

the st@s (ecipe stps dont always have to

were only demonstting one ecipe they

their system mar flexible.? For example a

Some Hive applications

Automdic diary: As a user mees though a hilding, radio beacons
transmit the uses’locdion to his or her wable computerinfor-
mation enteed into the computer is autotizally “stamped’with
its dae, time, and loc#ion.

Counter Intelliggnce(www.media.mit.edu/ci)This is a ive-year
program to irvestigate future kitchen te@nolagies. It incoporates
sud projects as MrJava, an intelligent cofee mabine, Scents
Sensewhich combines a dital nose with anwen,andVisiphone
which combines gaphics with tel@hone cowersaions.

Honey, | Shiunk the CDgwww.media.mit.edu/pia/ReseaCDs/
index.html): Poker chips contain a song title andadio frequenyg
ID tag. When a userlwoses one of thénips and dops it on a thle
with an RF tg readeran MP3-based judbox plays tha song?3
Impulse(agents.wwwmedia.mit.edu/gups/@ents/pojects/impulse):
Agents unning on wieless mobile déces conduct rgutiations on
behalf of luyers and selles.

PersonalAmbient Displgs (tangble.media.mit.edu/mjects/
Personal_Ambient_Disp/&sonal_Ambient_Disp.html}fhese
small deices subty transmit inbrmation by getting cold or hot,
moving, vibrating, or chandng shae They can be connected
through Hve to actvate eat other or toespond to input &m
other souces?

Personal locdor: A computer legs trad of the locéion of some
one with a veable computerlf the user so desis,the computer
can let other people knohis or her loction

Personal theme msic When the user entea bom,his or her

weamble sends a signal to a computer int tiowm,which then
plays a song thauser hashwsent
RemembanceAgents(rhodes.wwwmedia.mit.edu/people/rhodes/
RA): These pograms send the user of @amble computer inbr-
maion relevant to thausers locdion. A possilie goplicaion could
be an autontad tour guidedr a nuseumt
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polyphonic tg reader (vich can ead se-
eral tags simultaneousy) tha they origi-
nally planned to use & unaailable, so
they substituted seeral other tg reades
for it without dhangng ary code He also
believes thathe system implemerttan
was simpler with Hie than without itand
that Hive’s stucture allovs pats of this
system to be used with otlser

What’s next for Hive?

Krekorian sees Hie as the basi®f a
new way of creding large computer sys
tems.These systemsauld go beyond
traditional softvare reuse exploiting exist-
ing resouces @er a netwrk to creae nev
applicaions. For example he typothesies
two “Hive-ified” devices:a dhild’s inteac
tive stufed toy and a home sedty sys
tem.Without restating the systema user
could adl another Hie agent tha links the
two devices,creding an gplicaion tha
would use the tpto tell the dild tha his
mom was home fom work when the secu
rity system sensed her carigg into the
garage.

Hive's developes ewision an Intenet
buzzing with Hive ayents. Havever, before
tha hgppensthey need to deal with seral
issues. Br example they need toihish
Hive’s mobility layer. They also need to
increase Hie's staility so tha agents can
run pesistenty. In adlition, they need to
improve secuity—specifcally, protecting
hosts and@gents fom other hosts and
agents. fnally, they'd like some help.
Toward tha end they’ve released open-
source codedr Hive (wwwhivecell.net/
downloadhtml). Rersonall, I'm looking
forward to the dg when ny kitchen whips
me up a hocolae malt and a homemade
pizza while I'm playing pinodle.
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Robotics
Honeybees to
UAVs: doing the
waggle walk

Dick Price, dprice@computer.org

Ongoing reseath a theAustrlian
National Uniersity (ANU) in Canbera
shavs tha hong/bees possess a sof
visual odometer toauge hav far they have
flown, which helps them déct their hie
maes to bod souces Aside from its
importance or the stugt of insect behéor,
this finding might vell have
an impotant impact on the

instead thathe beesauge distance av-
eled ty the amount of imge motion thg
expelience duing the tip. Because ne
bees will tend todllow the sameaute as
the experienced brager, this sot of visual
odomety would prove to be quitealiable
regardless of wind conditions.

Fooling Mother Nature
To test their thegr Srinivasans goup

trained maked hongbees todrage a Beder
containing sugr solution positioned in a
narrow, well-lit wooden tunnel (seddure
2).When the tunned surfice vas ceered
with a visualy intense andom t&ture, the
bees wuld be boled into beliging they had
flown much further than thg actualy had

development of unmanned
flying vehides.

According to Mangam
Siinivasanthe bioengeer
leading this imestigtion,
honeg/bees pedrm varying
dances to commmicae with
other beeslzout the distance
and diection to 6od souces.
For the type of hongee
used in this wrk, a ound
dance indictes thathe bod
is within ébout 50 metey
(see kgure 1). Byond tha

i

distancethe beeswitch to
a waggle dancewith the
dance lasting mpotionally
longer for more distant 6od
souices and shifting axiall
accoding to the surs posi
tion in the sl to comnuni-
cate direction.

Animal behaioralists
once thought thabees esti
mae distancesypgaugng
the enegy they expend tav-
eling ba& and brth—the
longer the beeléw, the
longer its danceBut tail or
headvinds would male sut
estimdes highy unreliable,
so Smivasan and his col
leagues &ANU'’s Cente for
Visual Science (cvs.an
edu.au) hee found thaa
vety different mebanism is
at work. As reported ecenty
in Science€4 February 2000,
pp. 851-853)they argue

Figure 2. Closed at one end so the bees have only one point of entry, the
tunnel is covered with black insect-screen cloth to permit observation and to
give the bees a view of the sky. The test tunnel measures 6.4 meters long, 11
c¢m wide, and 20 ¢cm high. (Photograph by Teresa Belcher, Research School of
Biological Sciences, ANU.)

Figure 1. Honeybee (Apis mellifera lingustica Spinola) entering the test
tunnel. Canberra scientists have been studying honeybee behavior for almost
15 years using hives on the ANU campus. (Photograph by Jeff Wilson,
Research School of Biological Sciences, ANU.)
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In one the sées of elaed peiments e-
ported inSciencefor instancetheir 441-
ms-long vaggle dance indidad a fight of
184 metes outdoos, when thg had actuajl
flown just 12 metex—six metes outdoos
and six meter davn the tunnel. Snivasan
sumises thathe tunneldrced the bees to
fly closer to nearpobjects than thewould
ordinaily do in 1ying outdoos.“And, as
you fly along a saight line” he sgs,
“images thaare \ery close to yu povide

a \ery grea image \elocity, whereas objects
tha are futther avay don't gppear to mee
neaty so nmuch”” By flying so dosely to

the patemed suréce they receved visual
motion cues equalent to a mch longer
trip. Futhemore, when the tunnetd walls
were covered with hoizontal lines unning
parllel to their line of lightthus ceding
negligible image motion cueshe bees mer
accuetely indicaed the distanceavelled
with their ound dance

From bees to UAVs

Srinivasans goup is working with fund
ing from DARPA’s Contolled Biological
and Biomimetic Systemgaup undeAlan
Rudolf to goply these andalaed lesults to
their work with unmanned autonomous
vehides. Curently, in trying to see ha
robust this visual odomatwill be for
robotic \ehides,they are encouaged Ly
initial results using a land-basesbot.
“Certainly, it's imnune to headinds or
tailwinds,which you've got to worry about
with other methods.

Eatier work by Siinivasan sheed tha
bees tend tdy dowvn the midile of the
tunnel ly balancing the opticaldw from
the two sidesrather than k using stezo
medanisms ditionally used in obotics.
“They use ery low-level image motion
computing melanisms thigare a easier
algorithmically to do in eal time thanfor
example using steeovision,which in-
volves solving the coespondence pb-
lem; he sgs.“Therre’s no objectecani-
tion as sub going on.Ther ae just \ery
low-level image-motion cues being gied
up’” With these ihdings,ANU reseachers
have developed obot naigation systems
that require much less comput#nal
power—just tha of a standat laptop—
than would otherwise be needed

Srinivasan and his collgaes ae also
working on a pan@mic vision system
that enulates insect visiondr use in heh
coptes. Raher than #empting to deelop

an insect-lile compoundyg, they use
a specialf shaped eflector tha works
with a single camerto cpture a pan
oramic view for stailizing the \ehi
cle’s flight and impoving landings and
takeoffs.

Insect landing sétegies is another
area of inteest aANU. Traditional
expeliments ivolve insects landing
head onBy measung the ete & which
the surfce e@pandsthe insect wuld
gauce its decelation and &tend its
legs propriately. A more inteesting
problem is the gazing landing on a her
izontal suréce which is a moe typical
landing stategy for a LAV.

“Under those conditionshe looming
cues ag not \ety strong, as the insect is
basicaly moving almost paallel to the
surface” he sgs.The animal mainl
expeliences tansldional flow, which
tumns out to gain involve a firly sim-
ple algorithm. “T hey keep the angular
velocity of the image in the ge con
stant as theapproac the gound so
the laver thg are, the slaver theg/'re
flying automécally.” Consequenyi
when the insecirially touches davn, it
is flying with zero forward velocity—
without haring to do comple rangng.

“T he tajectoy then should be an
exponential time cuwe, which is eactly
wha you get;’ he sgs.“We're curently
trying to put thainto a fying vehide to
see hov well it works?”

To biology and back

Trained oiginally as an elecital
engneer Srinivasan vas intigued ly
the cabilities of insectstelaively
small bains while doing his PhDta
Yale “They don't have a lot of cgni-
tion, the way we do,but in the lav-level
aspects of visiorthey have eserything
it takes. If you wetch a fy land on a
teacupfor instanceyou find tha it does
a\ery nice jol’

The knavledge flow in Siinivasans
work goes both wys: findings fom
insect eseach—and fom work with
wallabies,birds,crabs,and humans tha
others ae undetaking 4 his institute—
feed into obotics vork, but also fow
bad in the other diection.“If the robot
doesnt work the way we think it
should tha puts us bacon the dawing
boad as &r as the biolgy is concened
as vell”
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Voice recognition
\Voice recognition technology
Is starting to add up

Shani Murray, smurray@computer.org

Heniy “Buddy” Gray, a mahemaics and stastics pofessor
at Southen Methodist Uniersity (hgay@mail.snu.edu) has
developed MahTalk—a software program tha tums words into
equdions. Gay originally creaed his wice lecanition pio-
gram to sae keystrokes,but he soonealized tha his software
could help not oyl other pofessional midnemadicians,but also
disabled or Bind people

“Instead of yu leaning the computes’languae, it leams
yours; explains Gay, who nav works in colldboration with
Metroplex Voice Computing ofrlington, Texas (www
mathtalk.com). MVC ofers seeral different poductsall
based on Gyy’s initial program. MahTalk/Scientifc Notebook
uses DagonDictae and Scienti€ Notebook and can be used
for all levels of mah. It recaynizes wer 2,000 wiced m#h
commandsincluding formulas sub as the quadtic formula,
3D wave equéion, and Bessel functiolY ou sg ‘quadratic
formula; and you sae 30 to 40 kystrokes; says Giay. He adls
tha the wice recagnition is \ery good because #'directed
toward phiase commandsleceasing the use of smalleowds
sud as‘in” and“to,” which are easly misundestood The po-
gram also hasrgphing caabilities.

While MT/SN helps paplegics and quadplegics, Gray’s
MathBrailleTalk aids instuctors of visualy impaired students

Impaired MT/VI usess type in the mhiemdical equéions,the
program leads them b&cand the usercan then coect the
program with commands sh@s‘erase”or “wrong word.” In
addition, MT/VI will assist both students and tdeess with its
ability to print the equéions in either Baille or regular text.
According to &son Balusela Hind student earing his mas
ter's dgree in méhemdics & Stephen FAustin Stée Univer-
sity, “T his will open a lot of doarin mah for bind people’

ArithmeticTalk, geaed tavards gade-sbool studentswill
also stengthen the mspectsdr disdled students. §a Giay,
“I realizzed tha most disaled dildren dont even et to alg-
bra,which cuts out their opptunities” Using MSWord97,the
program better intnduces thesehddren to méhemdics. The
students can tell it to ddsubtact, multiply, and dvide, and the
program will then shws them their vork.

Yet another potential pgram stemming im Giay’s initial
software is aimed gthose with spedécimpaiments. Kéhy
Whipple (kahy whipple@bglor.edu),chair of the Dpatment
of Comrunicaion Sciences and Disters & Baylor University,
has @plied for a gant and hopes to usedgis tetinolagy for
people with god canitive skills kut poor aticulation—for those
who hae sufered a stoke or hae a tumoyfor exkample An
inflection in a peson’s wice or a sées of noises could indita
various needs andigiger cetain icons epresenting aything
from food to entdainmentWhipple els sub a \ice-actvated
comnunicaion system—as opposed to the often cursinae

by translding mahemdical formulas and embossing them into and avkward point-and-tick models—"is despetely needed

Braille. Gray is also vorking on MahTalk for theVisually She ads, T he tetinolagy is deatly thele. We're not &ir avay.”

Web-agents

Shopbots: help
or hindrance?
David Clark, dwclark@earthlink.net

Geneally speakingabotis a softvare
component thizdoes the wrk of a human
or another bot (orgent). In tems of shop
ping, this can mean \eb potal (shopboy
that can displg product pice and gailabil-
ity from mrultiple online \endos. The type
surounding shopbots as$ethd they can
help the online shopper makducted pur
chases. But often shopbots/banly deliv-
ered pices,without other pement infor-
maion, sud as contisting £dures and
detailed speditations—Ileaing the shop
per informed but not necess#y educged

Market reseach has indiceed tha\Web
buyers like to compason shopinstead of
relying on high-pofile or mndom sites. Conse
guenty, as e-commee fourishesso does the
demanddr compehensie, useful shopbots.

To the future and beyond
The frst shopbot8Veb buyers used wre

relatively simple in most cases tyespideed
vendors sites ér basic (mosyl price) infor-
maion. The information they discavered was
limited and the mcess could tie up band
width and serers, causing esentment among
vendos (se€'Shopbots Becomagents br
Business Chargj ComputerFeb. 2000).
Today, instead of spid@ng, mary shopbot
developes either arange with coopegtive
vendos to access their ihase saema (in
retumn for the likelihood of inceased visita
and pgments)or shopbot sites use sophisti
caed pasing tetiniques and sipts to tain
their bots to gther moe ohust informaion
from the HTML on endos’ product pges.
Neither @proad delivers on the ultimee
promise of shopbots. Oneydaccoding to
Steve White of IBM’s Institute 6r Advanced
Commece, shopbots will autonteally
engage in comple transactions on behalf o
their human wners—or on othergents.
Attempting to delier these shopbots of
the futue, industy and unversity reseath
groups ae scambing to develop bot teb-
nology tha is efective and autonomous,
without introducing economict@osAs one
commecial example of this kind ofeseath,
take Rob Guttman and his coltpeeswork

a MIT. Their work on nomalizaion retiieval
forms the telnical basisdr Fictionless
Commece a shopbot erige used ¥ high-
traffic Web sites sug as lycos According to
Guttmanthe compay's CTO, the commer
cial version of this ontolgy-based shopbot
offers extended function\aer most cuent
shopbotsgiving shoppes the aility to make
apples-to-aples compasons.

Data collection is the key

“We're dle to pammeteize pioduct
details to aather lov level,” says Guttman.
The compay emplg/s teams of irdrma
tion architects wo develop ontol@ies for
ead of the poduct domains seed by the
companies o use the fctionless bot
engne. Their job is to déhe the common
fedure sets and the semantics usgd b
marufactuers,vendos, and uyers of a
paticular pioduct céegory—digital cam
eras,for example This compiled bog of
tems and its semantieletionships ag
then used touild templdes tha spides fill
in with daa collected fom theWeb to cie-
ate a ich product knevledge base

On the font end Frictionless uses aalue-
compaison engne—which uses temnolagy
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based on kneledge-representtion theoy
reseath—tha anal/zes the poduct knavl-
edge base accding to a shoppes’input. In
practice the Fictionless bot leads shopper
through a sees of questiongyhich helps
them bcus on gorities, ultimately building
a list of prorities.After peisonal piorities
are estalished the shopbot dispis aWeb
page thd lists a selection of similar pducts
(or the same pduct sold b different \ven
dors),sotted accatling to the hyer's esta-
lished piorities. In the varks nav is a sell-
bot thad can could intexct with shopbots to
negotiate pice and otherdaures based on
customer pferences.

Ontology means autonomy

Meanwhile, from an academic angle
Katia Sycaa’s reseach goup d Canegie
Mellon University also taks the ontolgical
approad to gve shopbots (and other types
agents) the hility to operte autonomousl

Her goup vision is a futwe for agent
interactivity that includes vhat she calls
middle agentstha act as gent egistries. In
this modela compax or individual puts a
shopbot on the netwk, and the botegis-
ters its sevices or submits aguest with the
one or moe &isting middle ayents it knavs
how to find. The midlile agents vould then
know haw to either adettise thé bot’s ser
vices or ha to locde a bot thiacan suppl
the lequested seice or poduct.

Sycan compaes the infastucture tha
would supparmiddle aents as similar in
concet to Suns“spontaneous netwking”
Jini, which provides potocols and seices
for resouce lookup in LAN ewironments.
However, not only would the infastucture
for her midlle-agent model need toark on
aWAN, but it would require a moe paverful
and syntacticajl forgiving maching metia
nism than simple lookupltkes povide.

“Tha’s wher it gets inteesting” says
Sycan.The @ents need to beke to de
sciibe the notioror concet of their cpa
bility; they need to belde to mach ser
vices with sevice requests—possip over
a bioad ange of tems. For tha, her goup
has deeloped Laks (Languae for Adver
tisement and RequestrfkKnowledge Shar
ing), an agent caability desciption lan
guage. Agents use this langge to mach
sewice-requesting gents with serice-pro-
viding agents. Requestsaiilled when the
provider’s adrertisement sufciently resem
bles the equested seice’s desdption.

Larks uses irdrmation retrieval andAl

techniques—along with digbuted object
programming—to disceer syntactical and
semantic similaty among gent cqability
desciptions. In a typical coiduration, a
middle ayent’s Laks-based ntahing engne
would useifve different flters,one eah for
context maching, word-frequeng profile
compaison,similarity matching, signdure
matching, and consaint maching. Uses
could conigure their bots ¥ chandng filter
parametes to ead sdisfactoy performance
levels. In other wrds,you could setgur
shopbot toihd product inbrmation tha was
neither too gnerl nor too spedit.

Bot behavior

As bots become mereficient in tems
of autonomousl finding information
they’ll stimulate competitiongiving buy-
ers moe dhoices. Butas Sycaa specu

oflates,if prices dop belav profitability,

vendos will be forced out of bisinesspr
perhaos forced into brming catels and
price-fixing schemes to stalize pices.

Speculéion about wha effect the into-
duction of billions of shopbots will ka on
our alead rapidly changng economic
models is the subject oéfi Kephat's work
as manger of IBM’s agents and emgent
phenomenargup (pat of IBM’s Institute
for Advanced Commer, www.reseath.
ibm.com/inbecon). Kphat's team is deel-
oping pototypes of angent econoypand
its suppating infrastucture. The pogram
mers huilt various shopboactors (buyers,
selles,and sgeral types of intanediares),
ead of which you can modify ¥ plugging
in pricing-algorithm and ngotiation-proto-
col componentsThe teans first piototype
econony compised potobots thamodeled
the book-selling méet.

“It' s inteesting to see hoa tund of
really simple indvidual agents,ead cre-
ated by a diferent human mgrammey
which have a little bit of infastucture and
the usual mgic of economic incenies in
commoncan poduce a méet or econ
omy that actualy works;” says Kephat.

However, in some &peliments with sim
ple bot pototypesbots ceae gclical price
wars. In these casethie team obsees tha
prices ae diven davn over a peiod of
time, revert to a high alue and then star
deceasing gain. Pice wars hgpen wen
seller @ents hae a lot of inbrmation eout
buyers and also hee curent information
about other selles piices.“You can see tlal

price wars occur because the botsrait

taking into account the l&tihood th&other
selles ae going to etalide,” explains
Kephat. So the ohious solutionhe sgs,is
to gve aents bresight.“T his needs to h@a
pen fr shot of theTuring challenge—it
has to be agldively simple solutiori.

The needdr a simple solution led the
reseath team to use a tewique called g-
leamning, a form of reinforcement learing
theow. Using g-leaming algrithms,the bot
can be taught th¢éhe ultimae goal is to opti
mize the futue discounted pfit as it's deter
mined wer a sees of stps,not optimiz the
immedide piofit. This“leaming” is accom
plished becaustheoketically, at ead estd-
lished time interal, the bot eceves einforce
ment inbrmation tha motivates it to @olve in
the desied beheior.

But thee’s a hith. Q-leaning theoy was
developed br ggents thaare inteacting in a
static ervironmentsays Kephat, and if
these other bots@contiuousy and sinul-
taneousf leaning and upding, they're
forming distincty nonstéionary environ-
mentsTha begs the theatical question:
Will the bots’price-setting behaors con
verge, modeling fatter pice fluctuaions or
will it r esult in a vinole lot of tail diasing?

Kephat and his team amnorking on the
ansvers to this and other questioiiey
strongly believe tha we need to undstand
how autonomous intective bots will behaee
by obseving them in the laoratory before
we tun them loose on theattd econory,
and common senseowld ayree with them.

Ultimately, the curent bot eseachers

and deelopes aen't just tiying to model
the world econony, they're tying to aute
mate it. Kephat echoes may who s tha
information is what drives the wrld econ
omy. Curent pospeity is often atributed
to the ise of the Intemet and e-commee,
but it's a esult of inbrmation flowing bet
ter. Information tha'’s not in theight place
at the ight time is ineficient. What bots
will do for us,say these eseachers, is
eliminae the ineficiencies.

Next time we shop 6r a Rkémon or an
MP3 player on the Interet,we’ll have to
remember &'re really shopping ér infor-
maion.And increasingy, the \alue ve pa
for in our shoppingxelience will be the
information delivered—quickly and tans
parently—by shopbots &
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