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Abstract 

In the winter, 2004 issue of AI magazine, we reported 
Vulcan Inc.’s first step toward creating a question-
answering system called “Digital Aristotle.” The goal of 
that first step was to assess the state of the art in applied 
knowledge representation and reasoning (KR&R) by 
asking AI experts to represent 70 pages from the advanced 
placement (AP) chemistry syllabus and to deliver 
knowledge-based systems capable of answering questions 
from that syllabus. This paper reports the next step toward 
realizing a Digital Aristotle: we present the design and 
evaluation results for a system called AURA, which 
enables domain experts in physics, chemistry, and biology 
to author a knowledgebase and that then allows a different 
set of users to ask novel questions against that 
knowledgebase. These results represent a substantial 
advance over what we reported in 2004, both in the breadth 
of covered subjects and in the provision of sophisticated 
technologies in knowledge representation and reasoning, 
natural language processing, and question answering to 
domain experts and novice users. 

Introduction  
Project Halo is a long-range research effort sponsored by 
Vulcan Inc., pursuing the vision of the “Digital 
Aristotle”—an application containing large volumes of 
scientific knowledge and capable of applying sophisticated 
problem-solving methods to answer novel questions. As 
this capability develops, the project focuses on two 
primary applications: a tutor capable of instructing and 
assessing students and a research assistant with the broad, 
interdisciplinary skills needed to help scientists in their 
work. Clearly, this goal is an ambitious, long-term vision, 
with the Digital Aristotle serving as a distant target for 
steering the project’s near-term research and development.  
 Making the full range of scientific knowledge accessible 
and intelligible to a user might involve anything from the 
simple retrieval of facts to answering a complex set of 
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interdependent questions and providing user-appropriate 
justifications for those answers. Retrieval of simple facts 
might be achieved by information-extraction systems 
searching and extracting information from a large corpus 
of text. But, to go beyond this, to systems that are capable 
of generating answers and explanations that are not 
explicitly written in the texts, requires the computer to 
acquire, represent, and reason with knowledge of the 
domain (i.e., to have genuine, internal “understanding” of 
the domain).  
 Reaching this ambitious goal requires research 
breakthroughs in knowledge representation and reasoning, 
knowledge acquisition, natural language understanding, 
question answering, and explanation generation. Vulcan 
decided to approach this ambitious effort by first 
developing a system capable of representing and reasoning 
about introductory, college-level science textbooks, 
specifically, a system to answer questions on advanced 
placement (AP) exams. (For details on the AP exam, see 
http://www.collegeboard.com/student/testing/ap/about.html) 
 Question answering has long challenged the AI field, 
and several researchers have proposed question answering 
against college-level textbooks as a grand challenge for AI 
(Feigenbaum, 2003; Reddy, 2003). Project Halo, described 
in this article, provides an essential component to meet that 
challenge—a tool for representing and using textbook 
knowledge for answering questions by reasoning. 
 As an initial, exploratory step toward this vision, Vulcan 
initiated the Halo Pilot in 2002—a six-month effort to 
investigate the feasibility of creating a scientific 
knowledgebase capable of answering novel questions from 
an AP (first-year, college-level) chemistry test. Three 
teams—SRI International, Cycorp, and Ontoprise—
developed knowledgebases for a limited section of an AP 
chemistry syllabus. The knowledgebases could correctly 
answer between 30 and 50 percent of the associated 
questions from the AP test (Friedland et al., 2004). 
 While encouraging, these results had limitations. Only a 
small subset of knowledge, from one domain, was tested—
leaving the question of how well the techniques would 
generalize to other material and other domains. 
Knowledge-representation experts, rather than domain 
experts, had encoded the knowledgebases, making large-



scale implementation impractical. Also, all test questions 
were translated manually from natural language into 
formal logic (also by knowledge-representation experts), 
not addressing the problem of question formulation by 
typical users. 
 In 2004, Vulcan initiated Halo Phase II with the goal of 
developing tools to enable Subject Matter Experts (SMEs), 
(e.g., chemists, biologists, and physicists), to formulate the 
knowledge and tools to enable less-experienced domain 
users, such as undergraduates in these disciplines, to 
formulate questions to query that knowledge. Again, 
multiple teams were awarded contracts to design and 
prototype knowledge-formulation and question-
formulation tools suited for domain experts. The system 
that emerged as the best of these attempts, and the one 
described in the rest of this article, is the Automated User-
Centered Reasoning and Acquisition System (AURA), 
which was developed by SRI International, the University 
of Texas at Austin, and the Boeing Company, with Prof. 
Bonnie John from Carnegie Mellon University serving as 
consultant. 
 In Halo Phase II, the goal was developing a software 
system that enabled domain experts to construct 
declarative knowledgebases in three domains (physics, 
chemistry, and biology) that could answer AP-like 
questions posed in natural language. The AURA team 
analyzed the knowledge-representation and question-
answering requirements; crafted a user-centered design; 
implemented an initial system prototype; conducted an 
intermediate evaluation in 2006; developed a refined 
version of the AURA system; and conducted a final 
evaluation of the system in 2008 and 2009. This paper 
summarizes that system and its evaluation. 

AURA System Development 
The concept of operation for AURA is as follows: a 
knowledge-formulation (KF) subject matter expert (KFE), 
with at least a graduate degree in the discipline of interest, 
undergoes 20 hours of training to enter knowledge into 
AURA; a different person, a question-formulation (QF) 
subject matter expert (QFE), with at least a high-school-
level education, undergoes four hours of training and asks 
questions of the system. Knowledge entry is inherently a 
skill-intensive task and, therefore, requires more advanced 
training in the subject as well as in using the system. A 
QFE is a potential user of the system, and we required less 
training for this position because we wanted as low a 
barrier as possible to system use.  
 We chose the domains of college-level physics, 
chemistry, and biology because they are fundamental hard 
sciences, and because they also stress different kinds of 
representations.  The AP test was established as the 
evaluation criterion to assess progress. Textbooks were 
selected that covered the AP syllabus for physics 
(Giancoli, 2004), chemistry (Brown et al., 2003), and 
biology (Campbell & Reece, 2001). A subset of each AP 
syllabus was selected that covered roughly 60 pages of text 

and 15–20% of the AP topics for each domain. The AURA 
team was challenged to design and develop a system that 
could fulfill the above concept of operations for the 
selected AP material. 

Overall Design and Requirements Analyses  
The initial design requirements were determined by 
conducting a series of three analyses (Chaudhri et al., 
2007; Chaudhri et al., 2010): 1) a domain analysis of 
textbooks and AP exams in the three domains; 2) a user-
needs analysis of the domain expert’s requirements for 
formulating knowledge; and 3) an analysis of a user’s 
question-formulation requirements. 

The domain analysis identified the four most-frequent 
types of knowledge representation needed in these three 
domains. These four types of knowledge contribute to 
answering approximately 50% of the AP questions (in 
order of importance): 
• conceptual knowledge: representing classes, 

subclasses, slots, slot constraints, and general rules 
about class instances 

• equations: a majority of questions in physics and 
some questions in chemistry involve mathematical 
equations 

• diagrams: all three domains make extensive use of 
diagrams 

• tables: often used to show relationships not repeated 
elsewhere in text   

A knowledge-formulation system was designed to 
accommodate these four knowledge types, but the module 
for diagram knowledge has not yet been implemented. 
Subsequent analyses were conducted to catalog the 
additional KR&R challenges in each domain that will be 
discussed later. 
 The user-needs analyses showed three main areas of 
concern for knowledge formulation by domain experts who 
are not trained in KR&R: 1) knowing where to begin is 
often challenging for domain experts (the blank slate 
problem); 2) knowledge formulation consists of a complete 
lifecycle that includes initial formulation, testing, revision, 
further testing, and question answering; and 3) the system 
should place a high value on usability to minimize required 
training. 
 The users asking questions are different from the users 
who enter knowledge, and the training requirements must 
be kept minimal because we cannot assume that the QFE 
will have an intimate familiarity with the KB or the 
knowledge-formulation tools. Because the QFE must 
specify a wide variety of questions, including problem-
setup scenarios in some questions, we could not use a rigid 
interface; instead, we adopted an approach based on 
natural language input. 
 We analyzed the English text of AP questions in all 
three domains (Clark et al., 2007). The language of science 
questions involves a variety of linguistic phenomena. We 
identified 29 phenomena and their frequency of occurrence 
(Clark et al., 2007). For example, approximately 40% of 



questions used direct anaphora, 50% used indirect 
anaphora, and 60% used prepositional phrases. This data 
served as the basis for the question-formulation language 
design of AURA.  
 For the current phase of development, we consciously 
chose to not leverage any methods for automatic reading of 
the textbook for the following reasons: First, we expected 
the system challenges to be significant without introducing 
a language-understanding component. Second, for the 
detailed knowledge representation and reasoning (KR&R) 
needed to answer AP questions in all three domains, we 
did not expect any automatic technique to approach the 
needed representation fidelity. Finally, for knowledge that 
involves computations and diagrams as in physics and 
chemistry, we did not expect fully automatic methods to be 
very effective. The AURA architecture does include 
provisions to import information from external sources, 
such as semantic web sources or well-developed 
ontologies, that might have been created automatically 
(Chaudhri, Greaves, Hansch, Jameson, & Pfisterer, 2008). 

AURA System Architecture 
The AURA system has three broad classes of functionality: 
knowledge formulation (KF); question formulation (QF); 
and question answering (QA). In addition, there is a 
training program for both KF and QF, which was 
developed over several years of experience training 
domain experts for both roles. In Figure 1, we show the 
overall system architecture.  

Knowledge Representation and Reasoning 
AURA uses the Knowledge Machine (KM) as its core 
knowledge representation and reasoning engine (Clark & 
Porter, 1999), a powerful, mature, frame-based knowledge-
representation system. Though KM is comparable to many 
state-of-the-art representation and reasoning systems, there 
are two features that are distinctive and have played a 
special role in AURA: prototypes and unification mapping 
(or UMAP). 
 A prototype is a set of axioms in the form of a 
description of each of a set of interconnected individuals. 
Prototypes are in a form that mirrors the structure of a 
concept map (i.e., a graph of descriptions of interconnected 
individuals). In AURA, a prototype eases the task of 
synchronizing the user-interface representation of concept 
maps as they are created and modified by a user with the 
knowledgebase representation. It also provides a way to 
acquire a group of axioms together instead of acquiring 
one rule at a time. We will give a concrete example of a 
prototype in a later section. 
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Figure 1. AURA System Architecture 

 Unification Mapping or UMAP is a method for equating 
two objects that may heuristically infer additional 
equalities as a side effect. Because of UMAP, a KFE need 
not be as complete in specifying a knowledgebase as a 
highly trained logician might be. The heuristics in UMAP 
are designed to draw plausible inferences in an under-
specified knowledgebase, filling in details that a KFE 
might leave out. We give an example of the use of UMAP 
in the next section. 
 Both prototypes and UMAP were first used in the 
context of a system called SHAKEN, which was developed 
as part of DARPA’s Rapid Knowledge Formation program 
(Clark et al., 2001). The positive result from this prior 
work was the basis for including them as a central design 
feature in the AURA system. 

Knowledge Formulation 
Our approach to knowledge formulation (KF) includes 
three salient features inform: 1) the use of a document as a 
starting point and context for all knowledge entry; 2) a pre-
built library of components that provides the starting point 
for any KF process; and 3) the choice of user-interface 
abstractions that are driven by a usability analysis and the 
native representations of knowledge within a textbook. We 
discuss each of these aspects of KF in greater detail.  
 We embed an electronic copy of each of the three 
textbooks into the user  interface of AURA to serve two 
purposes: First, it helps specify the context and the scope 
of the knowledge to be entered. Second, a semantic search 
facility based on WordNet mappings from words in the 
document to concepts in the KB serves as the basis of 
making suggestions for concepts relevant for encoding that 
word.  
 



 
Figure 2. A domain expert working with AURA 

 The KFEs build their KBs by reusing representations in 
a domain-independent KB called the Component Library 
or CLIB (Barker, Porter, & Clark, 2001). The Component 
Library is built by knowledge engineers (KEs) and 
contains domain-independent classes such as Attach, 
Penetrate, Physical Object; predefined sets of relations 
such as agent, object, location; and property values to help 
represent units and scales such as size or color. These 
classes and relations and their associated axioms provide a 
starting point to the KFEs in the KF process. A selection of 
top-level classes in CLIB is shown in Figure 3. 
  

 

 

  Figure 3. The Top-Level Event and Entity Classes in CLIB 

To capture the most frequently occurring knowledge types 
identified earlier, we settled on the following user-interface 
elements: directed graphs for structured objects (concept 
maps) and logical rules and equations for mathematical 
expressions. To enhance the usability of the system, we 
implemented interfaces for chemical reactions and tabular 
data. We expect that this capability will enable users to 

encode knowledge sufficient to answer approximately 50% 
of the AP questions in all three domains. A detailed 
account of these choices and the underlying theory is 
available elsewhere (Chaudhri et al., 2007). 
  As an example, in Figure 4, we show a (simplified) 
representation of the concept of a Eukaryotic Cell. The 
node labeled as Eukaryotic-Cell is the root of the graph and 
is a prototypical individual of that class. The grey nodes 
represent non-root individuals in the graph; the unboxed 
words such as has-part are relations between individuals 
and are shown as the labels on the edges. Logically, the 
graph denotes a collection of rules that assert that for every 
instance of Eukaryotic-Cell, there exist instances of each 
node type shown in this graph, and that they are related to 
each other using the relations in the graph. Within AURA, 
this graph is represented as a prototype and is equivalent to 
the following rule: 

(forall ?c 
 (=> (instance-of ?c Eukaryotic-Cell) 
  (exists ?x ?y ?z 
    (and 
      (instance-of ?x Nucleus) 
      (instance-of ?y Chromosome) 
      (instance-of ?z Plasma-Membrane) 
      (has-part ?c ?x) (has-part ?c ?y) 
      (has-part ?c ?z) (is-inside ?y ?x))))) 

 
From a logical point of view this rule could be broken into 
multiple rules, for example, each rule stating the existence 
of a part, and another rule stating their relationships. The 
prototypes combine multiple rules into a single rule to 
provide a coarser granularity of knowledge acquisition. 
Abstraction offered by prototypes, and the fact that a 
prototype mirrors the structure of a concept map as seen by 
a user, contributed to enabling the domain experts to author 
knowledge. 
 

 
Figure 4. A Biology Concept for the Eukaryotic Cell 

 As an example of a process in biology, in Figure 6, we 
show a (simplified) concept map for Mitosis. This concept 
map shows the different steps in Mitosis (Prophase, 
Metaphase, etc.), their relative ordering, and that its object 
is a Diploid Cell and its result is two Diploid Cells. The 
numbers shown next to a lock symbol in the relations, such 
as result, represent the cardinality constraints. For 
example, the result of Mitosis is exactly two Diploid Cells. 
The current AURA system supports such declarative 



descriptions and reasoning about processes, but does not 
currently support running process simulations.  
 

 

Figure 5. A Biology Concept Representing Mitosis 

 The KFEs create the concept maps using four primary 
graph-manipulation operations: 1) adding a new individual 
to a graph; 2) specializing an individual to be an instance 
of a more specific class; 3) connecting two individuals 
using a set of pre-defined relations; and 4) equating two 
individuals. Equating two individuals uses the UMAP. As 
an illustration of UMAP, in Figure 6, we show the concept 
of H2O (or water) from chemistry. The top part of this 
graph encodes that every instance of H2O has-part an OH- 
ion and H+ ion, and further an H+ ion has-atom H. The 
lower part of the graph shows another H2O individual that 
is added to this graph. If the user equates the two H2O 
individuals in this graph, the UMAP operation will 
recursively equate the H+, OH-that are related by has-part 
and H that is related by the has-atom relation. This 
inference is heuristic and plausible. For this inference to 
follow deductively, the KFE would need to encode 
cardinality constraints on has-part and has-atom relations. 
UMAP can draw equality inferences even when the KB is 
underspecified in that the cardinality constraints are not 
specified. In some cases, all the cardinality constraints are 
not known; in other cases, adding cardinality constraints 
may be incorrect. The ability of UMAP to work with such 
under-specification in the knowledgebase substantially 
contributed to the usability of the concept map-editing 
interface of AURA. 
 As a final example of a concept formulated using 
AURA, in Figure 8, we show a concept map for Free Fall. 

The concept map encodes different properties of Free Fall, 
and the mathematical equations that relate them. The 
property values are shown in green ovals, and the 
mathematical equations are shown in green squares. 
AURA supports a WYSIWIG editor for entering equations, 
and the equations can be related to properties that are 
represented in the knowledgebase. 

 
Figure 6. The Use of UMAP on Two Entities Recursively 

Equates All Its Parts 

 
Figure 7. A Physics Concept of Free Fall. 

We have designed a training course for KFEs that prepares 
them to enter knowledge into AURA. The current KF 
training is approximately 20 hours. The training introduces 
the KFEs to the mechanics of using the system and to basic 
knowledge-engineering principles. In the knowledge-
engineering section of the training, the KFEs learn about 
different classes and relations in CLIB, and how to use 
them. The training program includes several hands-on 
exercises in which KFEs encode knowledge and are given 
feedback on their specific choices. The core of the training 
program is common across all three domains. There are, 
however, several domain-specific modules. For example, 
physics KFEs must learn to properly use vector math, 
which does not arise in the other two domains. For 
chemistry, the KFEs must learn about entering chemical 
compounds and reactions, and about chemistry-specific, 
system-available knowledge. For biology KFEs, there is an 
added emphasis on learning about describing processes. 



Question Formulation  
Recall that the users asking questions are different from the 
users who enter knowledge, and that the training 
requirements must kept low. Further, we cannot assume 
that the QFE will have an intimate familiarity with the KB 
or the knowledge-formulation tools. Our question-
formulation design aims to account for these requirements.  
 While there has been considerable recent progress in 
question answering against a text corpus (e.g., Voorhees 
and Buckland, 2008), our context is somewhat different, 
namely posing questions to a formal KB, where a 
complete, logical representation of the question is needed 
for the reasoner to compute an answer. In this context, the 
designer is typically caught between using “fill-in-the-
blank” question templates (Clark et al., 2003), which 
severely restricts the scope of questions that can be posed, 
or attempting full natural language processing on 
questions, which is outside the reach of the current 
technology. In AURA, we have aimed for a “sweet spot” 
between these two extremes by using a controlled language 
(a simplified version of English) called CPL (Computer-
Processable Language) for posing questions, with feedback 
mechanisms to help in the question-formulation process. 
Our hypothesis is that a controlled language such as CPL is 
both easily usable by people and reliably understandable 
by machines and that, with a small amount of training and 
good runtime feedback mechanisms, users can express 
their questions easily and effectively in that form. 
 
 A basic CPL sentence has the form 

subject + verb + complements + adjuncts 
where complements are obligatory elements required to 
complete the sentence, and adjuncts are optional modifiers. 
Users follow a set of guidelines while writing CPL. Some 
guidelines are stylistic recommendations to reduce 
ambiguity (e.g., keep sentences short, use just one clause 
per sentence), while others are firm constraints on 
vocabulary and grammar (e.g., words of uncertainty (e.g., 
“probably,” “mostly,” are not allowed, not because they 
cannot be parsed but because their representation is outside 
the scope of the final logical language)). Examples of 
typical AP questions from the three domains, and a typical 
reformulation of them within CPL, are shown in Figure 8. 
As shown, questions (especially in physics) may be 
multiple sentences divided into a “setup” describing a 
scenario and a “query” against that scenario. Multiple-
choice questions are re-expressed in CPL as separate, full-
sentence questions.  
 To pose a question, the user first enters a CPL form of it 
in the interface. If a CPL guideline is violated, AURA 
responds with a notification of the problem, and advice 
about how to rephrase the question. If this happens, then 
the user rephrases the question, aided by a searchable 
database of example questions and their CPL equivalents, 
and a list of the vocabulary that CPL understands, and the 
process repeats. Alternatively, if the question is valid CPL, 
then AURA displays its interpretation in graphical form for 

the user to validate. An example of this graphical form is 
shown in Figure 9, depicting how AURA interpreted the 
first example in Figure 8 in terms of individuals, 
relationships, and the focus of query (denoted by a 
question mark). If the interpretation appears incorrect then 
the user would again rephrase the CPL to correct the 
problem. The graphical interface also allows a user to 
perform a limited number of edits, for example, changing 
the relation or asserting that the two nodes are equal. 
Otherwise, the user instructs AURA to answer the question 
invoking the query answering described in the next section. 
 

Example 1 (Physics) : Original Question: 
A car accelerates from 12 m/s to 25 m/s in 6.0 s. How 
far did it travel in this time? 

Reformulation in CPL: 
A car is driving. 
The initial speed of the car is 12 m/s. 
The final speed of the car is 25 m/s. 
The duration of the drive is 6.0 s. 
What is the distance of the drive? 

Example 2 (Chemistry) : Original Question: 
What two molecules must always be present in the 
products of a combustion reaction of a hydrocarbon 
compound? 
Reformulation in CPL: 
What are the products of a hydrocarbon combustion 
reaction? 
Example 3 (Biology) : Original Question: 

Crossing over occurs during which of the following 
phases in meiosis? a. prophase I; b. ...[etc]…? 

Reformulation in CPL: 
Does crossing over occur during prophase I? 

Figure 8. Example Questions Reformulated in CPL 

 

 
Figure 9. Graphical Feedback during Question Formulation 

Let us now consider how this design meets the 
requirements of the QFEs. The CPL formulations expected 
of QFEs are in terms of English words and, thus, do not 
require intimate knowledge of the KB’s vocabulary. To 
read the interpretation graph, the QFEs must understand 
the meaning of the concepts and relations. Through 
AURA, the QFEs can access the documentation of the 
classes and relations, and a vocabulary list of all classes 



and relations known to the system. The task of 
understanding the terms of the KB by inspection is 
significantly easier than using those terms for creating new 
concepts as the KFEs are required to do. CPL also allows 
QFEs to construct problem scenarios with respect to which 
a question is asked. 

Question Answering 
Once a question has been formulated to a user’s 
satisfaction, AURA attempts to answer it. Conceptually, 
the question-answering module of AURA has four 
functional components: reasoning control, a reasoning 
engine, specialized reasoning modules, and explanation 
generation.  
 The reasoning control relates the individuals in the 
question interpretation to the concepts in the KB, identifies 
the question type, and invokes the necessary reasoning. In 
some cases, relating an individual to a class in a KB is 
straightforward, especially as AURA allows KFEs to 
associate words with the concepts that they create. In other 
cases, AURA must resort to specialized reasoning based on  
search and semantic matching (Clark et al., 2007; Chaw et 
al., 2009 ).  
 A question type denotes a style of formulation and 
reasoning used for answering a question. Currently 
supported question types are: computing a slot value, 
checking if an assertion is true or false, identifying 
superclasses, comparing individuals, describing a class, 
computing the relationship between two individuals, and 
giving an example of a class. 
 AURA uses the Knowledge Machine (KM) as its core 
reasoning engine. AURA has a special purpose reasoning 
module for solving algebraic equations that is used 
extensively both in physics and chemistry. It has a graph-
search utility to support the question type that computes 
relationships between two individuals. There is a 
chemistry-specific module aimed at recognizing chemical 
compounds and reactions, and a physics-specific module to 
support vector arithmetic. 
 Finally, AURA supports an incremental explanation 
system that produces explanations in (rudimentary) 
English. Some of the terms in the explanation are 
hyperlinked, and the user can drill down to obtain more 
information. As an example, in Figure 10 , we show the 
answer to the question shown as Example 1 in Figure 10.  
 AURA first presents an answer to the question (s=111 
m) followed by the explanation. In the explanation, AURA 
shows the equation and specific variables used to solve the 
equation. In more complex questions that use more than 
one equation, the explanation includes the specific order in 
which the equations are applied. 
 In Figure 11, we show an example answer to a chemistry 
question that was shown earlier as Example 2. The answer 
shows that the reactants of a combustion reaction include a 
chemical and oxygen gas. As a final example, we show the 
answer to the Example 3 considered earlier. The answer for 
this question shows that, indeed, crossing over happens 
during Prophase-I. The phrases such as “the crossing-over 

of the DNA’’ are generated using the rudimentary English 
generation facility in the system. 
 
 
 

 
Figure 10. Answer to an Example Physics Question 

 

 
 

Figure 11. Answer to an Example Chemistry Question 

 
 

Figure 12. Example Answer to Biology Questions 

AURA Evaluation 
We conducted a full user evaluation to find out how well 
AURA enables graduate students in the three domains 
(physics, chemistry, and biology) to construct 
knowledgebases that are able to answer AP-like questions 
posed by undergraduates.  
 To ensure that the assessment was independent and un-
biased, Vulcan contracted BBN Technologies to design 
and run the evaluation. BBN teamed up with Larry Hunter 



at the Medical School of the University of Colorado at 
Denver. The evaluation was designed to answer four main 
questions:  

• How well does AURA support Knowledge 
Formulation (KF) by domain experts? 

• How well does AURA support Question Formulation 
(QF) by domain experts? 

• How good are AURA’s Question Answering (QA) 
and Explanation Generation? 

Experimental Design 
To address the experimental questions, three sets of 
experimental conditions were evaluated: 

• Expert versus non-expert KF experience:  
� The expert condition was represented by 

individuals highly knowledgeable in their domain, 
with significant training and previous experience 
using AURA, working in close collaboration with 
the members of the AURA team, over many 
months.  

� The non-expert condition was represented by 
individuals qualified in their domain at a graduate 
school level, with limited training (20 hours) and 
no previous experience using AURA, working 
independently for a limited amount of time 
(approximately 120 hours) over a four week 
period. 

• Expert versus non-expert QF experience: 
� The expert condition was represented by the same 

SMEs as in the expert KF condition. 
� The non-expert condition was represented by 

individuals qualified in their domain at an 
undergraduate level, with limited training (4 
hours) and no previous experience using AURA. 

• Question familiarity and difficulty: 
� A set of Reference Questions was developed in 

each domain by SRI. These questions were known 
to AURA development team and available at KF 
time. These questions were used by SMEs to test 
their knowledge as it was entered. 

� A set of Novel Questions was developed by BBN 
specifically for the evaluation. These were not 
known to the AURA development team and were 
not available at KF time. They were used only 
during the QF evaluations of the newly developed 
KBs. 

� A subset of Selected Novel Questions was chosen 
from the set of all Novel Questions as an 
experimental control variable. The choice was 
made in a way that AURA was able to answer a 
large fraction of these questions but not all of 
them. This was done to avoid floor and ceiling 
effects while comparing results. 

Experimental procedure 
The main steps in the test procedure were: 

1. The AURA team selected the textbook sections and 
AP syllabus for each domain. 

2. Expert SMEs of the AURA team authored 
knowledgebases for the selected textbook sections and 
AP syllabus, testing the knowledge against the 
Reference Questions. These SMEs worked closely 
with the development team. 

3. Experienced AP teachers recruited by BBN generated 
the set of Novel Questions in each domain to cover the 
topics in the selected syllabus. 

4. Expert SMEs at SRI formulated and asked the set of 
Novel Questions of their expert KBs. 

5. BBN and SRI chose 50 Selected Novel Questions in 
each domain that best matched AURA’s implemented 
reasoning capabilities. 

6. SRI trained the non-expert KFEs recruited by UC 
Denver in the use of AURA for knowledge 
formulation in a 20-hour training course.  

7. The non-expert KFEs at UC Denver authored 
knowledge over a four-week period (using 
approximately 120 hours of KF time). 

8. SRI trained the non-expert QFEs in the use of AURA 
for question formulation in a 4-hour training course. 

9. For each expert-formulated and non-expert-formulated 
KB, one or more QFEs from the same domain asked 
selected novel questions. 

10. BBN scored the results by submitting the question 
formulation and answering transcripts to two 
independent AP teachers for grading. The graders 
were different from the AP teachers who were used in 
step 3 to design the questions. 

Science Textbooks and Syllabus 
The following textbooks were used for the three domains: 

• Biology. Campbell, Neil, 6th Edition  
• Chemistry: The Central Science. Brown, Theodore, 

9th Edition 
• Physics: Principles with Applications. Giancoli, 

Douglas, 6th Edition. 
The AURA syllabus was selected to represent a set of key 
concepts within the AP curriculum in each domain. The 
syllabus was necessarily limited so that it would present a 
manageable amount of knowledge to be encoded yet 
included enough material to support a significant number 
and variety of questions. The main topics and approximate 
page count are shown below in Table 1. 
 

Table 1. AURA Syllabus 

 Main topics Pages 
Biology Cell structure, function, and 

division; DNA replication; 
protein synthesis 

44 

Chemistry Stoichiometry; chemical 
equilibria; aqueous reactions; 
acids and bases 

67 

Physics Kinematics; Newtonian dynamics 78 
 



There were significant differences in the information 
content of the selected pages and how well they covered 
the full AP syllabus in each domain. In biology, the 
selected 44 pages covered 23% of the full syllabus, in 
chemistry, 67 pages covered 11% of the full syllabus, and 
in physics, 78 pages covered 15% of the full syllabus. 

Test Subjects 
The expert SMEs consisted of three domain experts, one in 
each domain, each with at least a graduate degree in the 
respective discipline. These SMEs had worked with the 
AURA team throughout the development process and, 
though still primarily domain experts, had become very 
familiar with AURA and its knowledge-engineering 
process.    
 The non-expert KFEs consisted of nine students, three in 
each domain, recruited from the Denver area, through the 
University of Colorado at Denver, where the non-expert 
KF experiment was conducted. Subjects were recruited and 
screened with an abbreviated AP-level exam to ensure 
domain knowledge. The participants were mostly graduate 
students or graduates, with one advanced undergraduate. 
They were all computer literate, with a range of previous 
computer experience, but none had studied artificial 
intelligence, knowledge representation, or used AURA 
before. 
 The non-expert QFEs consisted of 16 (six in biology and 
five each in chemistry and physics) undergraduates or very 
recent graduates, who were recruited in the Boston area, 
through BBN, where the non-expert QF experiment was 
conducted. Participants were considered qualified in their 
domain if they 1) had passed a first-year university course 
that covered the AP curriculum with an A or B grade or 2) 
had passed the AP exam with a score of 4 or 5 during the 
previous three years. None had prior experience with 
AURA. 
 It should be noted that the QFEs were aware of the 
correct answers to the questions, and thus could recognize 
when the system had produced the correct answer, a 
somewhat unnatural situation compared with use “in the 
wild.” The results thus represent an upper bound on the 
performance that one might expect with a more natural 
class of users, who are less knowledgeable about the 
domain and the questions.  

Data Results and Analysis 
First, we look at the question-answering performance of 
the knowledgebases authored by the expert SMEs (see 
Figure 13). In biology and physics, the expert KBs 
correctly answered more than 70% of the Reference and 
Selected Questions and more than 40% of all Novel 
Questions. The expert chemistry KB did not perform as 
well, especially for Novel Questions with a score of 18% 
for all Novel Questions and 44% for Selected Novel 
Questions. Because the selected set was artificially 
constructed for experimental control, the score on the 
selected questions should not be interpreted as an 

indication of the overall performance of the system. The 
score on the selected questions is shown in Figure 14 as 
this number is used in later graphs for comparative analysis 
across different experimental situations. There were two 
reasons for the low scores in chemistry: The expert KFE 
over-tuned the KB to the set of reference questions and did 
not provide good coverage of the syllabus for novel 
questions. Plus, the current version of AURA does not 
support a facility to author procedural knowledge, which 
was required for some questions. 
  
 

Figure 13. Expert SME Performance 

 Second, we look at how the non-expert SMEs did in 
comparison to the experts. The experimental design 
produced a 2x2 comparison of expert vs. non-expert 
performance for both KF and QF. To understand the 2x2 
aspect of the experiment design, we can interpret the four 
points shown in Figure 14 as follows: the upper-left point 
represents the question-answering correctness score when 
the knowledge was formulated by an expert KFE, but the 
questions were asked by a non-expert QFE; the lower-left 
point represents the situation when the knowledge was 
formulated by a non-expert KFE, and the questions were 
also asked by a non-expert QFE. The other two points can 
be analogously interpreted. To see the effect of question-
formulation expertise, the graph should be read left to 
right; to see the effect of knowledge formulation expertise, 
the graph should be read top to bottom. 

Thus, for biology (Figure 14), we can see the effect of 
knowledge-formulation expertise by observing that the 
KBs authored by expert KFEs always had better scores 
than the KBs authored by non-expert KFEs. We can see 
the effect of the question-formulation expertise by reading 
the graph left to right and noticing that question-
formulation expertise had no effect for KBs that were 
authored by expert KFEs. But for KBs authored by non-
expert KFEs, the non-expert QFEs outperformed the expert 
QFEs. This is an anomaly, where it appeared that the non-
expert QFEs outperformed the expert KFEs by 20%. 
Further analysis revealed that much of this difference 



resulted from the non-expert SMEs being less rigorous in 
how they formulated questions, and so we discount this 
difference as poor experimental control. 

 

 
Figure 14. Expert vs. Non-Experts in Biology 

In chemistry (Figure 15), there were no significant 
differences among the four conditions. Expert vs. non-
expert KF was equivalent as was expert vs. non-expert QF.  

 

 
Figure 15. Experts vs. Non-Experts in Chemistry 

In physics (Figure 16), experts outperformed non-
experts in both KF and QF. Physics is the only domain 
where the experts outperformed non-experts at QF. Physics 
questions were generally more complex to formulate 
because the formulations included several statements to 
describe the problem setup as well as language 
simplifications. The questions that involved specifying 
vector quantities were especially challenging for the non-
expert QFEs to formulate. An obvious next question is to 
explain the reason for the differences between expert and 
non-expert conditions for each of the three domains. 
 For chemistry, our analysis of the results suggested that 
the results were confounded by a floor effect. Recall from 
Figure 13 that the expert-authored KBs scored only 18% 
on the novel questions. This significantly limited the kinds 
of questions that could be put in the selected set of 
questions considered in the experiment reported in Figure 
15. The newly trained KFEs were able to perform as well 
as the expert KFEs, because the score of the expert KFEs 
was too low to start with. 

 

 

 
Figure 16. Experts vs. Non-Experts in Physics 

 The results for physics were easier to explain because 
there are known limitations of the system that make it 
harder for the KFEs to formulate knowledge about forces, 
and limitations in the inference technique to answer 
questions that may lead to a very large search space.  
 For biology, the situation was the most complex. Our 
initial hypothesis for this difference was that it was due to 
difference in the knowledge-entry time given to the expert 
KFEs and non-expert KFEs. The expert KFEs for biology 
had worked on their KB for about 600 hours whereas the 
evaluation experiment had allowed them to work for only 
120 hours. Based on the progress the KFEs had made and 
the review of their KBs, we believe that the knowledge-
entry time was not an issue for physics and might have had 
minor impact for chemistry. Based on this analysis, we 
designed a follow-up experiment only for biology to assess 
the effect of the knowledge-entry time on the question-
answering performance. 
 In the follow-up experiment, one expert KFE was asked 
to create the same biology KB, but was limited to 120 
hours for knowledge-entry time. One of the better 
performing non-expert KFEs was given an additional 180 
hours, thus giving them a total of 300 hours, to continue 
authoring and refining their KB. We show the result in 
Figure 17. When expert was limited to 120 hours of KF 
time and the non-expert was allowed 300 hours, the two 
KBs exhibited similar performance with 60% correct 
answers. The additional 180 hours of KF time improved 
the non-experts score form 21% to 60%. The subject 
reported that the extra time gave her a much better 
understanding of AURA, the knowledge-entry process, and 
her KB.  
 This result shows a steep improvement in the 
performance of a KB authored by a newly trained KFE as 
the knowledge-entry time increased from 120 hours to 300 
hours. The corresponding rate of improvement for an 
expert KFE as they are given more knowledge-entry time 
is much smaller. This is quite likely because the expert 
KFE has already reached a high level of performance, and 
the marginal value of additional knowledge-entry time 
toward question-answering performance diminishes. The 
most important conclusion that followed from this follow-
up study was that given additional experience with the 



system, a KB authored by a newly trained KFE 
significantly improves in question-answering performance, 
and starts to approach the performance of an expert KFE. 
This was an excellent result in support of AURA’s ability 
to enable a newly trained KFE to author competent 
knowledgebases. 
 

 
Figure 17. Results of Extended KF in Biology 

 Let us now return to the questions that this evaluation set 
out to answer. First, we consider the question: “how well 
does AURA support KF by domain experts?” The 
evaluation results show that for biology, a newly trained 
KFE can construct knowledgebases that, given sufficient 
knowledge-entry time, approach in performance to the 
performance of the knowledgebases constructed by expert 
KFEs. For physics, the KBs constructed by expert KFEs 
outperform the KBs constructed by newly trained KFEs. 
For chemistry, while the results show that the performance 
of the KBs authored by newly trained KFEs was very close 
to the KBs authored by expert KFEs, we believe this result 
to be confounded by the floor effects in the experimental 
data. 
 Second, we consider the question: “how well does 
AURA support QF by domain experts?” The results show 
that most non-expert QFEs in the domains of biology and 
chemistry were able to perform question formulation as 
effectively as experts KFEs after only four hours of 
training. The non-expert users in physics had some 
difficulty in posing the questions. 
 Third, we address the question: “how good is AURA’s 
question answering performance?” The results show that 
AURA was able to answer significant numbers of AP-level 
difficulty questions in the domains of biology and physics, 
reaching or nearly reaching performance needed for a 
passing score on the AP test. We conclude that, with some 
caveats, the goal of comfortable use of AURA with 
minimal training has been met for question formulation, 
and for knowledge formulation it is well advanced. 

Multi-User Knowledge Entry Using a Team of KFEs 
A major lesson from the evaluation results reported above 
was that the capabilities of AURA in enabling knowledge 
formulation and question formulation for biology were 
well advanced while some challenges remain in other 
domains. Based on that assessment, a natural scaling 
question was to undertake some preliminary work to 
support the construction of a KB from a full biology 
textbook.  
 The experiment results reported earlier involved only 
one user working in isolation in constructing a KB. Such a 
constraint was an artifact of a controlled experiment and is 
no longer practical when a KB is developed by a team of 
domain experts. So, as a step toward scaling to a 
knowledgebase for a full biology textbook, we devised a 
pilot experiment to answer the following questions: “Can 
we replicate the training and knowledge-entry process by 
teaching it to professionals external to the AURA 
development team?”; and “Can a team of experts 
collaborate to create a shared knowledgebase of a scope 
similar to what was created in the controlled experiment?” 
 To address these questions, SRI teamed with an 
organization based in India to organize a multi-user 
knowledge-entry experiment (MUKE). Two knowledge-
engineering professionals from the MUKE team came to 
SRI and underwent a “trainers training.” The trainers 
training included the training designed for KFEs as well as 
in-depth exposure to AURA. These knowledge-
engineering professional returned to their parent 
organizations and delivered the AURA training to a team 
of three biologists. 
 The current AURA system has no software support for 
multi-user knowledge entry. We designed a collaboration 
process external to AURA that the team of biologists could 
use for knowledge entry. The process defined specific roles 
for the members of the team as contributors and 
integrators. The contributors developed representations for 
the portion of a syllabus, and an integrator combined the 
contributions into an integrated whole. The combined 
knowledge-entry time of the three-member biologist team 
was comparable to the sum total of the knowledge-entry 
time of the three biologists who had participated in the 
controlled experiment reported earlier. The team 
collaboratively constructed the KB for the same syllabus, 
and using the same set of test questions. The three-person 
SME teams were explicitly directed to work together to 
discuss, partition, and collaborate in performing the 
knowledge-entry tasks.  
 The KB produced by the team was tested on the 
identical set of novel questions that was used in the 
controlled study. The results are shown in Figure 18.  

 Let us now discuss how these results answer the 
questions that we set out to answer. We first address: “Can 
we replicate the training and knowledge-entry process by 
teaching it to professionals external to the AURA 
development team?” Given that the knowledge-
engineering professionals of an organization external to 
AURA development team could learn the AURA training 



and deliver it to the biologists who constructed KBs that 
performed very closely to those constructed by SRI’s 
expert KFEs suggests that we could successfully replicate 
the knowledge-engineering process. Initially, the AURA 
development team needed to provide constant support to 
the knowledge engineers from the MUKE team; but, such 
need significantly dropped during the exercise. 
 

 
Figure 18. Multi-user KF Team Results 

 Second, we address the question: “Can a team of experts 
collaborate to create a shared knowledgebase of scope 
similar to what was created in the controlled experiment?” 
Here again, we believe that the MUKE team succeeded as 
the correctness scores on their knowledgebases were 
comparable to the scores on the ones authored by the 
expert KFEs at SRI. 
 Finally, because the score on the all novel questions on 
the KB produced by the MUKE team (75%) is much 
higher than the corresponding score on the KB produced 
by the expert KFEs (47%), one can naturally ask, “Did 
MUKE team outperform the expert KFEs at SRI?” We 
believe that the experiment design does not support such 
conclusion because the knowledge-entry process, 
resources, and conditions for the KBs authored by the SRI 
expert KFEs were significantly different from those used 
by the MUKE team. 

Discussion 
The results demonstrate significant progress since the Halo 
Pilot in 2004. We now have SME-authored KBs achieving 
question-answering scores of 70% in many conditions. 
Non-expert SMEs, with light training in AURA, can create 
KBs that achieve scores of 60% when given a similar 
amount of knowledge-entry time as the expert SMEs. Even 
non-expert SMEs with light training and limited entry time 
achieve scores in the 40–50% range, equivalent to the 
scores achieved in the Halo Pilot by AI experts. The multi-
user knowledge-entry results were very encouraging—
demonstrating that a dedicated KF team of domain experts 

can author a biology KB that achieved a score of 75%, 
even for novel questions.  
 However, the results also demonstrate remaining 
challenges. In general, question-answering performance 
drops when the KBs are presented with novel questions 
that the knowledge formulator did not specifically prepare 
the KB to answer. Sometimes, this drop is dramatic, even 
for the expert KFEs. The knowledge capture and reasoning 
capabilities are still incomplete because none of the SMEs, 
not even the expert SMEs, could create KBs that 
performed above the 80% level, even for the reference 
questions that were known in advance.  
 Moreover, the danger of over-optimizing a system to 
perform well on a specific test problem always exists—in 
ways that do not generalize to the real-world problem. 
Because we rigorously focused the Halo work on this 
particular AP question-answering task, there is certainly 
that danger here. AP exams generally test only a special 
band of conceptual knowledge. They try to avoid simple 
memorization questions about instance data. They also 
avoid questions that require overly complex reasoning or 
calculation that would be difficult both to complete during 
a time-based test and to grade.  
 We also simplified many aspects of a standard AP exam 
to facilitate administering the test to a computer program. 
Because AURA could not process diagrams, all knowledge 
found in diagrams, either in the textbook or in test 
questions, had to be explicitly encoded into the system. 
Because AURA could not handle full natural language, all 
test questions were reformulated by the SMEs into simpler 
statements using AURA’s Controlled Processing Language 
(CPL). This usually required multiple attempts with some 
amount of question interpretation by the user. AURA could 
also not process multiple-choice questions as a single 
chunk and therefore required the user to break the question 
into separate sub-questions for each multiple-choice 
option.  
 Despite these caveats, our overall assessment is that 
AURA has achieved a well-engineered process for SMEs 
to encode basic conceptual knowledge, especially if the 
SMEs have sufficient experience with AURA and work as 
a member of a dedicated KF team. Based on our initial 
multi-user experiment, scaling up this process to a large 
KF team that can encode the conceptual knowledge for a 
complete, college-level textbook appears possible.  
 AURA has also achieved a question-formulation 
capability that enables users to easily and effectively ask 
questions of the system. CPL works well. Users find it easy 
to learn. Non-experts are generally as effective as experts 
at formulating and asking questions of the system. Yet, 
room for improvement exists here as well. Finding the 
right reformulation often requires several iterations, and 
finding the precise terms to match the correct KB concept 
is sometimes awkward. Nevertheless, the overall question-
formulation process worked well enough. 
 At the same time, knowledge-representation and 
reasoning challenges require further research before we 
can break through the 80% barrier and can represent all 



knowledge in a full textbook. As mentioned earlier, we 
have performed analyses of the KR&R requirements of AP 
exams for our scientific domains and have identified 
several areas where we need improvement:  

• Actions and processes: especially in biology, much of 
the knowledge involves complex processes. 
Currently AURA uses a STRIPs-style representation 
of the events and sub-events, which works well for 
many AP questions, but we expect will not be rich 
enough to master more advanced material. 

• Computational knowledge: in many situations, such 
as balancing chemical reactions, the knowledge 
needed involves computational procedures that do 
not lend themselves to a declarative representation. 

• Qualitative reasoning: all three domains require 
qualitative reasoning, which we have yet to add to the 
system. 

• Naïve physics and core commonsense reasoning: we 
currently rely on the user to add commonsense 
context as he formulates questions, but question-
answering performance could be greatly improved, 
especially in physics, where non-experts had the most 
difficulty in question formulation. 

• Diagram understanding and spatial reasoning: much 
of the textbook knowledge and many of the test 
questions, in all three domains, use diagrams to 
portray implicit spatial knowledge. Knowledge 
formulation could be streamlined if the system could 
ingest and understand diagrams with implicit spatial 
knowledge.  

• Abduction, abstraction, analogy, and uncertainty: 
these well-known KR&R challenges are present here 
as well. We avoid some of these complexities by 
focusing on well-established, clearly defined 
scientific knowledge, but even then, these challenges 
arise. 

• Web-scale collaborative authoring: so far AURA has 
been developed as an authoring tool for individual 
authors or small authoring teams but not for web-
scale collaborative authoring. 

Future Plans 
Vulcan, Inc. plans to continue pursuing the vision of the 
Digital Aristotle by: 1) scaling-up AURA’s current 
capabilities to handle a full textbook in biology, while 
simultaneously 2) conducting advanced research on the 
remaining KR&R challenges.  
 Given the encouraging results for encoding basic 
conceptual knowledge into AURA, we plan to employ a 
multi-user collaborative KF team to encode all of the 
knowledge possible for an introductory biology textbook 
and to then see how well that KB performs on a full AP 
biology exam. To this end, we plan to improve AURA’s 
software infrastructure to support a knowledge-formulation 
team and to redesign the question-formulation and 
question-answering capability. The result will be a 

knowledgebase and improved question-answering system 
for the complete biology textbook. 
 This will produce the first prototype of what we are 
calling a HaloBook—a new kind of electronic textbook 
that contains an underlying knowledgebase capable of 
answering the reader’s questions and providing tailored 
instruction. We have explored the concept with researchers 
in education and interactive tutoring and feel this may 
produce a rich set of possibilities for creating a new 
educational technology. 
  In parallel, Project Halo will continue to develop 
semantic extensions to Semantic MediaWiki (SMW)+, 
which provides a community-based environment for 
authoring ontologies and creating semantically enhanced 
wikis (Pfisterer et al., 2009). SMW+ has been widely used 
and is being applied to project management, enterprise 
information, the management of large terminology sets, 
and the semantic enhancement of Wikipedia. Vulcan will 
continue to explore applications of SMW+, especially in 
the semantic enhancement of Wikipedia and the creation 
scientific datasets on the Web. 
 Also in parallel, Vulcan will continue to explore 
solutions to the hard KR&R challenges listed above. In 
2007, Vulcan began a new effort, Halo Advanced Research 
(HalAR), to address the difficult knowledge-representation 
and reasoning (KR) challenges that prevent the realization 
of Digital Aristotle. This effort has produced a new 
semantic rule language and reasoning system, Semantic 
Inferencing on Large Knowledge (SILK), which includes 
major advances, including for default and higher-order 
reasoning (Grosof et al., 2009; Wan et al., 2009). In the 
next year, we will refine the SILK system, exploring richer 
models of process based on SILK, developing an authoring 
environment to enable SMEs to use its more powerful 
KR&R features, and eventually integrating the best 
features of AURA, SMW+, and SILK into the next 
generation Halo system. 
 In summary, Vulcan continues to make a steady 
progress toward its long-term goal of producing a Digital 
Aristotle. Central to achieving this goal is Vulcan’s plan of 
development, which revolves around the encoding of well-
defined bodies of knowledge such that the success of the 
encoding can be measured using an objective and easily 
understood test. Vulcan’s development plan is driving the 
formulation and solution of fundamentally difficult 
problems in knowledge representation and reasoning; 
knowledge acquisition; question answering; and web-scale 
authorship and reasoning. As the technology develops and 
matures further, Vulcan will explore opportunities for 
using this technology to solve important problem for 
education, bio-discovery, and business enterprise. 
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