Brittleness Category	Code	Answers				Justifications				Total			
		MC	DA	FF	Total	MC	DA	FF	Total	MC	DA	FF	Total
Modelling	B-MOD-1	0	7	2.5	9.5	0	3	2	5	0	10	4.5	14.5
	B-MOD-2	0	35.5	14	49.5	2.5	41	14	57.5	2.5	76.5	28	107
	B-MOD-3	0	0	0	0	0	0	0	0	0	0	0	0
	B-MOD-4	0	0	0	0	0	0	0	0	0	0	0	0
Implementation, Language	B-IMP-1	3	7.5	22	32.5	6	7	18	31	9	14.5	40	63.5
	B-IMP-2	0	0	0	0	0	0	0	0	0	0	0	0
	B-IMP-3	0	0	0	0	0	0	0	0	0	0	0	0
Management	B-MGT-1	0	0	0	0	0	0	0	0	0	0	0	0
	B-MGT-2	0	0	0	0	0	0	0	0	0	0	0	0
	B-MGT-3	0	7.5	0	7.5	1.25	7.5	0	8.75	1.25	15	0	16.25
Formation, Learning	B-KFL-1	0	0	0	0	0	0	0	0	0	0	0	0
	B-KFL-2	0	0	0	0	0	0	0	0	0	0	0	0
Inference, Reasoning	B-INF-1	0	0	0	0	0	0	0	0	0	0	0	0
	B-INF-2	0	0	0	0	0	0	0	0	0	0	0	0
	B-INF-3	0	7.5	3	10.5	0	7.5	3	10.5	0	15	6	21
	B-INF-4	0	0	0	0	0	0	0	0	0	0	0	0
	B-INF-5	0	0	0	0	0	1	0	1	0	1	0	1
Query Management	B-QMN-1	0	0	0	0	0	0	0	0	0	0	0	0
	B-QMN-2	0	5	3	8	0	3.5	1	4.5	0	8.5	4	12.5
Answer Justification	B-ANJ-1	0	0	0	0	8.25	1	0	9.25	8.25	1	0	9.25
	B-ANJ-2	0	1	3	4	1.5	0.5	5	7	1.5	1.5	8	11
	B-ANJ-3	0	2	2	4	6.5	15	12	33.5	6.5	17	14	37.5
Quality Metrics	B-QMT-1	0	0	0	0	0	0	0	0	0	0	0	0
Meta-capabilities	B-MTA-1	0	2.5	10.5	13	0	2.5	10.5	13	0	5	21	26
Non-brittleness	OTHER	42	64.5	14.5	121	47.5	69	23.5	140	89.5	133.5	38	261
	Total	45	140	74.5	259.5	73.5	158.5	89	321	118.5	298.5	163.5	580.5

Project Halo
Failure Explanation

Project Halo
Failure Explanation

Team:	SRI			
	Answer		Justification	
Question Type \& Number	Answer Failure Explanation	Brittleness Causes	Justification Failure Explanation	Brittleness Causes
MC 07				
MC 08			SMEs complained of excessive irrelevant information in the explanation (SME1 gave 0.5 on justification, SME2 and SME3 both gave 0). For each of the five parts of the question, the system justified the type of reaction (needed to determine the products), the products of the reaction (needed to check for precipitates), and for each product, its solubility. A bug in the interface resulted in the nested justifications being flattened, detracting further from the readability of the justification. This flattening bug appeared in the SHAKEN interface, but not in the tty interface used at the KB development site. Currently does not load	$\begin{aligned} & \text { B-MGT-3:1.25; B-ANJ- } \\ & 1: 1.25 \end{aligned}$
MC 09				
MC 10				
MC 11				
MC 12				
MC 13			SME1 deducted half marks because the justification was "a bitB-ANJ-3:0.5 lengthy". There is no irrelevant information provided in the justification, but there may be ways to tighten up the wording.	
MC 14			SME1 gave 0 for a justification he noted was "correct" and "proper", but "lengthy". The question asks if carbon dioxide is formed, if water is formed, if carbon monoxide is formed, how the oxidation number of oxygen is affected, and how the oxidation number of carbon is affected. It might be possible to build a system that justifies at a coarser level of detail as more things require justification. Or a system that justifies at a coarser level if there is risk of a full page of justification.	B-ANJ-3:1
MC 15				
			SME1 deducted 0.5 marks for a correct, but lengthy justification. In general our justifications that involve computing oxidation numbers for multiple species are lengthy.	B-ANJ-3:0.5
MC 17	An accidental gap in the KB prevented us from handling vanadium and OCl .	OTHER:3	An accidental gap in the KB prevented us from handling vanadium and OCl-. Justification showed that the system knows how to compute changes in oxidation number.	OTHER:2
MC 18				

Project Halo
Failure Explanation

Project Halo
Failure Explanation

Team:	SRI			
	Answer		Justification	
Question Type \& Number	Answer Failure Explanation	Brittleness Causes	Justification Failure Explanation	Brittleness Causes
MC 47	The KB does not contain laws or definitions for "buffer capacity".	OTHER:3	The KB does not contain laws or definitions for "buffer capacity".	OTHER:3
	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3
MC 49	The KB is incomplete in the laws governing pH of buffered solutions.	OTHER:3	The KB is incomplete in the laws governing pH of buffered solutions.	OTHER:3
MC 50	The KB is incomplete in the laws governing pH of buffered solutions. The existing knowledge was able to eliminate three of the five possibilities so the system generated both (b) and (d) as its answer. We would have expected half marks for correctness.	OTHER:3	The KB is incomplete in the laws governing pH of buffered solutions.	OTHER:3

Project Halo
Failure Explanation

Team:	SRI			
	Answer		Justification	
Question Type \& Number	Answer Failure Explanation	Brittleness Causes	Justification Failure Explanation	Brittleness Causes
Detailed Answel				
DA 01a				
DA 01b				
DA 01c				
DA 01d				
DA 01e				
DA 02a	Question D2 asked for a representative example of types of reaction. We completely failed to anticipate this kind of question and had not built examples into our representations explicitly. We were able to find examples by searching through the KB's test cases (embedded in the KB concepts) and through the question encodings. In D2a, we searched for a reaction with an insoluble product, but we failed to check that there were aqueous solutions in the reactants and/or an aqueous solution product in addition to the insoluble product.	B-QMN-2:2	Question D2 asked for a representative example of types of reaction. We completely failed to anticipate this kind of question and had not built examples into our representations explicitly. We were able to find examples by searching through the KB's test cases (embedded in the KB concepts) and through the question encodings. In D2a, we searched for a reaction with an insoluble product, but we failed to check that there were aqueous solutions in the reactants and/or an aqueous solution product in addition to the insoluble product.	B-QMN-2:1
DA 02b	Question D2 asked for a representative example of types of reaction. We completely failed to anticipate this kind of question and had not built examples into our representations explicitly. We were able to find examples by searching through the KB's test cases (embedded in the KB concepts) and through the question encodings. In D2b, we found a valid oxidation-reduction reaction, but SME2 wanted a better explantion of what species was being oxidized. The answer justification template for oxidation-reduction reactions could be improved.	B-ANJ-2:1		
DA 02c	Question D2 asked for a representative example of types of reaction. We completely failed to anticipate this kind of question and had not built examples into our representations explicitly. We were able to find examples by searching throug the KB's test cases (embedded in the KB concepts) and through the question encodings. In D2c, we searched for a combustion reaction and found one in one of our software tes cases. Unfortunately, the example (which was meant only to test the software correctness, not the soundness of the Chemical knowledge) contained an imaginary species: 2CH4O.	B-MOD-1:1; B-MOD-2:0	The justification template for combustion reaction did not contain a satisfactory definition.	$\begin{aligned} & \text { B-ANJ-2:0.5; B-QMN- } \\ & \text { 2:0.5 } \end{aligned}$
DA 02d				

Project Halo
Failure Explanation

Team:	SRI			
	Answer		Justification	
Question Type \& Number	Answer Failure Explanation	Brittleness Causes	Justification Failure Explanation	Brittleness Causes
DA 02e	Question D2 asked for a representative example of types of reaction. We completely failed to anticipate this kind of question and had not built examples into our representations explicitly. We were able to find examples by searching through the KB's test cases (embedded in the KB concepts) and through the question encodings. In D2e, we searched for any reaction, failing to check that it was ionic. As luck would have it, the first reaction found was not ionic, and resulted in a meaningless computation of net ionic equation.	B-QMN-2:3	Question D2 asked for a representative example of types of reaction. We completely failed to anticipate this kind of question and had not built examples into our representations explicitly. We were able to find examples by searching through the KB's test cases (embedded in the KB concepts) and through the question encodings. In D2e, we searched for any reaction, failing to check that it was ionic. As luck would have it, the first reaction found was not ionic, and resulted in a meaningless computation of net ionic equation.	B-QMN-2:2
DA 03a				
DA 03b				
DA 03c	The KB does not contain any knowledge of reactions that may occur when a single chemical is heated.	B-MOD-2:3	The KB does not contain any knowledge of reactions that may occur when a single chemical is heated.	B-MOD-2:3
DA 03d				
DA 03e				
DA 04a	The question asked for the reactants and products of the reaction as well as the balanced net ionic equation. The system's answer showed and justified the reactants and products and the net ionic equation. The KB does not currently balance net ionic equations (an oversight in KB coding). For that reason alone SME2 and SME3 gave zero for the answer.	B-MOD-2:2	The question asked for the reactants and products of the reaction as well as the balanced net ionic equation. The system's answer showed and justified the reactants and products and the net ionic equation. The KB does not currently balance net ionic equations (an oversight in KB coding). For that reason alone SME1 gave zero on justification.	B-MOD-2:1
DA 04b	The KB contains the incorrect assumption that all chemicals are in solution when computing the complete ionic equation.	B-MOD-2:1	The KB contains the incorrect assumption that all chemicals are in solution when computing the complete ionic equation, rendering the justification meaningless.	B-MOD-2:2.5
DA 04c	Question D4 asked for solutions for five of the eight parts. Since our chemical name translator could not translate "coppe hydroxide", we chose not to encode D4c.	OTHER:3	Question D4 asked for solutions for five of the eight parts. Since our chemical name translator could not translate "coppe hydroxide", we chose not to encode D4c.	OTHER:3
DA 04d	Encoded but not submitted (a difference in the UT and SRI environments caused this question to run indefinitely at SRI).	$\begin{aligned} & \text { B-MGT-3:1.5; B-INF- } \\ & 3: 1.5 \end{aligned}$	Encoded but not submitted (a difference in the UT and SRI environments caused this question to run indefinitely at SRI).	$\begin{aligned} & \text { B-MGT-3:1.5; B-INF- } \\ & 3: 1.5 \end{aligned}$
	Officially out of scope.		Officially out of scope.	
DA 04t	Question D4 asked for solutions for five of the eight parts. We chose not to encode D4f.	OTHER:3	Question D4 asked for solutions for five of the eight parts. We chose not to encode D4f.	OTHER:3
DA 04g	Encoded but not submitted (a difference in the UT and SRI environments caused this question to run indefinitely at SRI).	$\begin{aligned} & \text { B-MGT-3:1.5; B-INF- } \\ & 3: 1.5 \end{aligned}$	Encoded but not submitted (a difference in the UT and SRI environments caused this question to run indefinitely at SRI).	$\begin{aligned} & \text { B-MGT-3:1.5; B-INF- } \\ & 3: 1.5 \end{aligned}$

Project Halo
Failure Explanation

Team:	SRI			
	Answer		Justification	
Question Type \& Number	Answer Failure Explanation	Brittleness Causes	Justification Failure Explanation	Brittleness Causes
DA 04h			SME1 gave 0 for justification because it was "long" (28 lines).	B-ANJ-3:1
DA 05a			Question D5 required three things: the identification of the products of each reaction, the identification of any precipitates among those products and the net ionic equation of each reaction (requiring explanation of solubility and electrolyte status for all reactants and products). SME1 gave zero on justification because it was "much too long just to show what the precipitate is". SME2 also gave zero because the justification was long. The justification included 2 lines to identify the type of reaction, 2 lines to explain what the products were, 6 lines each to determine whether the two products were precipitates and 32 lines to compute the net ionic equation (4 lines for each reactant and product to determine its solubility and 4 lines for each reactant and product to determine its electrolyte status). The wording could no doubt be tightened up, but to give a complete, coherent justification the same credit as no justification at all (or as an incoherent erroneous justification) is unreasonable.	B-ANJ-3:2
DA 05b			The justification for a reaction with no net ionic equation could be much shorter.	B-ANJ-3:2

Project Halo
Failure Explanation

Project Halo
Failure Explanation

Team:	SRI			
	Answer		Justification	
Question Type \& Number	Answer Failure Explanation	Brittleness Causes	Justification Failure Explanation	Brittleness Causes
DA 06c	Question D6 required the oxidation numbers of each element B-MOD-2:1 and an identification of which species were oxidized and which were reduced. The KB did not have the knowledge required to determine which species were oxidized and reduced, but the system produced the correct answer for the oxidation numbers.		Question D6 required the oxidation numbers of each element B-MOD-2:1.5 and an identification of which species were oxidized and which were reduced. The KB did not have the knowledge required to determine which species were oxidized and reduced, but the system produced the correct justification for the oxidation numbers. It seems harsh for SME1 to have given no credit at all for justifications.	
	Question D6 required the oxidation numbers of each element B-MOD-2:1 and an identification of which species were oxidized and which were reduced. The KB did not have the knowledge required to determine which species were oxidized and reduced, but the system produced the correct answer for the oxidation numbers.		Question D6 required the oxidation numbers of each element B-MOD-2:1.5 and an identification of which species were oxidized and which were reduced. The KB did not have the knowledge required to determine which species were oxidized and reduced, but the system produced the correct justification for the oxidation numbers. It seems harsh for SME1 to have given no credit at all for justifications.	
DA 07a	Our system did not have the ability to prepare activity series fc B-MOD-2:1.5; B-IMPthree anonymous species. 1:1.5		Our system did not have the ability to prepare activity series fc B-MOD-2:1.5; B-IMPthree anonymous species.1:1.5	
DA 07b	Our system did not have the ability to consider reactivity of three anonymous species.	$\begin{aligned} & \text { B-MOD-2:1.5; B-IMP- } \\ & \text { 1:1.5 } \end{aligned}$	Our system did not have the ability to consider reactivity of three anonymous species.	$\begin{aligned} & \text { B-MOD-2:1.5; B-IMP- } \\ & \text { 1:1.5 } \end{aligned}$
DA 07c	Our system did not have the ability to consider oxidation readiness of three anonymous species.	$\begin{aligned} & \text { B-MOD-2:1.5; B-IMP- } \\ & \text { 1:1.5 } \end{aligned}$	Our system did not have the ability to consider oxidation readiness of three anonymous species.	$\begin{aligned} & \text { B-MOD-2:1.5; B-IMP- } \\ & 1: 1.5 \end{aligned}$
DA 08a	Our KB was incomplete in areas required to deal with partial hydrolysis.	B-MOD-2:2.5	There were no justification templates in the (incomplete) KB laws dealing with partial hydrolysis	B-MOD-2:3
DA 08b	Our KB was incomplete in areas required to deal with partial hydrolysis.	B-MOD-2:2.5	There were no justification templates in the (incomplete) KB laws dealing with partial hydrolysis	B-MOD-2:2.5
	A bug in the system prevented it from identifying the ionic parts of HCl . Since part of the question was to produce the balanced molecular equation, which our system did, getting no credit for this question from two SMEs seems harsh.	B-MOD-1:3	A bug in the system prevented it from identifying the ionic parts of HCl . Since part of the question was to produce the balanced molecular equation, which our system did, getting no credit for this question from two SMEs seems harsh.	B-MOD-2:2
DA 09b	Encoded but not submitted (a difference in the UT and SRI environments caused this question to run indefinitely at SRI).	$\begin{aligned} & \text { B-MGT-3:1.5; B-INF- } \\ & 3: 1.5 \end{aligned}$	Encoded but not submitted (a difference in the UT and SRI environments caused this question to run indefinitely at SRI).	$\begin{aligned} & \text { B-MGT-3:1.5; B-INF- } \\ & 3: 1.5 \end{aligned}$
	A bug in the system prevented it from identifying the ionic parts of HBr . Since part of the question was to produce the balanced molecular equation, which our system did, getting no credit for this question seems harsh.	B-MOD-1:3	A bug in the system prevented it from identifying the ionic parts of HBr . Since part of the question was to produce the balanced molecular equation, which our system did, getting no credit for this question seems harsh.	B-MOD-1:3

Team:	SRI			
	Answer		Justification	
Question Type \& Number	Answer Failure Explanation	Brittleness Causes	Justification Failure Explanation	Brittleness Causes
DA 09d	Encoded but not submitted (a difference in the UT and SRI environments caused this question to run indefinitely at SRI).	B-MGT-3:1.5; B-INF- 3:1.5	Encoded but not submitted (a difference in the UT and SRI environments caused this question to run indefinitely at SRI).	B-MGT-3:1.5; B-INF- $3: 1.5$ 3:1.5
DA 10	Question D10 did not require a solution to a problem, but a discussion of the system's ability to solve types of problems (a kind of meta-reasoning).	$\begin{aligned} & \text { B-MTA-1:1.5; B-IMP- } \\ & 1: 1.5 \end{aligned}$	Question D10 did not require a solution to a problem, but a discussion of the system's ability to solve types of problems (a kind of meta-reasoning).	$\begin{aligned} & \mathrm{B}-\mathrm{IMP}-1: 1.5 ; \mathrm{B}-\mathrm{MTA}- \\ & 1: 1.5 \end{aligned}$
DA 11a				
DA 11b				
DA 11c	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3
	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3
DA 12a				
DA 12b	The KB was incomplete in one of the laws for computing dissociation constants. Furthermore, the system had trouble inferring knowledge about the unknown (CH3)NH2NO3.	B-MOD-2:2.5	The justification templates were incomplete in one of the laws for computing dissociation constants. Furthermore, the system had trouble inferring knowledge about the unknown (CH3)NH2NO3.	B-MOD-2:3
DA 12c	Not submitted (gap in the KB for computing pH when one solution or chemical is added to another solution).	OTHER:3	Not submitted (gap in the KB for computing pH when one solution or chemical is added to another solution).	OTHER:3
DA 12d	Not submitted (gap in the KB for computing pH when one solution or chemical is added to another solution).	OTHER:3	Not submitted (gap in the KB for computing pH when one solution or chemical is added to another solution).	OTHER:3
DA 13a	The KB was incomplete in its coverage of polyprotic acids (a missing exception to a general rule).	B-MOD-2:3	The KB was incomplete in its coverage of polyprotic acids (a missing exception to a general rule).	B-MOD-2:3
DA 13b	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3
DA 13c	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3
DA 13d	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3
DA 14a			Marks were deducted for not rounding three significant figures down to one. Marks were deducted for using a KB term ("concentration change constant") in the justification that is not a general Chemistry term.	B-ANJ-1:1; B-INF-5:1

Project Halo
Failure Explanation

Project Halo
Failure Explanation

Team:	SRI			
	Answer		Justification	
Question Type \& Number	Answer Failure Explanation	$\begin{gathered} \text { Brittleness } \\ \text { Causes } \\ \hline \end{gathered}$	Justification Failure Explanation	$\begin{gathered} \text { Brittleness } \\ \text { Causes } \\ \hline \end{gathered}$
	Question D17c asked for the pH of the carbonic acid solution, [$\mathrm{HCO} 3-]$ and [CO3-]. The system produced the correct answel for pH and [HCO3-], but not [CO3-]. SME3 gave no credit for this question. In the absence of the axioms needed to solve for [CO3-] correctly, the system falls back on an inappropriate method of solving the question. If the correct axioms were present, the system would be prevented from defaulting to the incorrect method. (In this case, it might be said that the system is not brittle enough and should have failed rather than reasoning inappropriately).	OTHER:1.5	Question D17c asked for the pH of the carbonic acid solution, [HCO3-] and [CO3-]. The system produced the correct justification of pH and [HCO3-], but not [CO3-]. SME3 gave nc credit for this question.	OTHER:2.5
DA 17d	The KB was incomplete in one of the laws for computing dissociation constants.	OTHER:3	The KB was incomplete in one of the laws for computing dissociation constants.	OTHER:3
DA 18a			The system was able to answer the question by looking up memorized facts in the KB. These do not (by default) trigger any justification (such facts are normally considered too specific a detail to include in justifications). In this case, justification would have been appropriate.	B-ANJ-3:3
DA 19a				
	In the absence of the axioms needed to solve for concentrations correctly, the system falls back on an inappropriate method of solving the question. If the correct axioms were present, the system would be prevented from defaulting to the incorrect method. (In this case, it might be said that the system is not brittle enough and should have failed rather than reasoning inappropriately).	OTHER:2.5	In the absence of the axioms needed to solve for concentrations correctly, the system falls back on an inappropriate method of solving the question. If the correct axioms were present, the system would be prevented from defaulting to the incorrect method. (In this case, it might be said that the system is not brittle enough and should have failed rather than reasoning inappropriately).	OTHER:2.5
DA 20	In the absence of knowledge of electronegativity and acidity, the system calculated pH based on memorized dissociation constants. Although this approach produced a correct orderins on acidity, SME2 and SME3's prerogative to give no credit at all.	B-ANJ-3:2	In the absence of knowledge of electronegativity and acidity, the system calculated pH based on memorized dissociation constants, rendering the justifications trivial. Although this approach produced a correct ordering on acidity, it was within SME2 and SME3's prerogative to give no credit at all for justification.	B-ANJ-3:2.5

Project Halo
Failure Explanation

Team:	SRI			
	Answer		Justification	
Question Type \& Number	Answer Failure Explanation	Brittleness Causes	Justification Failure Explanation	Brittleness Causes
DA 21a	After trying to insert pages from batch2 into batch1, SME2 los the ordering of batch2 answers and was unable to find the answer to D21a. The KB was incomplete in the law for computing pH of salt solutions, making it unable to calculate the pH for this question. It was only able to report whether the pH would increase or decrease as a result of ion hydrolysis.	OTHER:3	After trying to insert pages from batch2 into batch1, SME2 los the ordering of batch2 answers and was unable to find the answer to D21a. The KB was incomplete in the law for computing pH of salt solutions, making it unable to calculate the pH for this question. It was only able to report whether the pH would increase or decrease as a result of ion hydrolysis.	OTHER:3
DA 21b	The justification correctly states that $\mathrm{Fe} 3+$ is more acidic due to the greater charge (SME1 and SME3 gave full credit). SME 2 seems to have overlooked the justification.	OTHER:1		
DA 22a	The system was able to determine that the normal pH calculation produced an unreasonable value (> 7 for an acid). The ability to perform a calculation permitted by the KB and then reflect on the appropriateness of that calculation is beyond the current system/language.	B-MTA-1:1; B-IMP-1:1.5	The system was able to determine that the normal pH calculation produced an unreasonable value (> 7 for an acid). The ability to perform a calculation permitted by the KB and then reflect on the appropriateness of that calculation is beyond the current system/language. The justification hinted e the inappropriateness ("the acid solution is basic"), but not giv any explanation.	B-IMP-1:1; B-MTA-1:1
DA 23a	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3
	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3	Not submitted (we were unable to complete the laws governin pH of buffered solutions by the sequestration deadline).	OTHER:3
DA 24a			Gap in the KB for computing pH of salt solutions. (Default pH was correct for this part).	OTHER:3
DA 246	Gap in the KB for computing pH of salt solutions. Our Chemis claims that the answer in the Vulcan key is incorrect.	OTHER:3	Gap in the KB for computing pH of salt solutions. Our Chemist claims that the answer in the Vulcan key is incorrect.	OTHER:3
DA 24c	Gap in the KB for computing pH of salt solutions.	OTHER:3	Gap in the KB for computing pH of salt solutions.	OTHER:3
DA 24d	Gap in the KB for computing pH of salt solutions.	OTHER:3	Gap in the KB for computing pH of salt solutions.	OTHER:3
DA 24e	Gap in the KB for computing pH of salt solutions.	OTHER:3	Gap in the KB for computing pH of salt solutions.	OTHER:3
DA 25	Our laws governing buffer solutions were incomplete.	OTHER:1.5	We were unable to attach justification templates to laws governing buffer solutions by the sequestration deadline.	OTHER:3

Project Halo
Failure Explanation

Project Halo
Failure Explanation

Team:	SRI			
	Answer		Justification	
Question Type \& Number	Answer Failure Explanation	$\begin{aligned} & \hline \text { Brittleness } \\ & \text { Causes } \\ & \hline \end{aligned}$	Justification Failure Explanation	Brittleness Causes
FF 08	Question FF8 would require a kind of meta-knowledge for the system to "reflect on what it knows". It would have been possible to simply query all of the Chemistry-specific slots for the two solutions, but initial experiments suggested that would not be fruitful. It would be worth investigating whether an analogy system (like Ken Forbus' Structure Matching Engine) would turn up interesting results.	$\begin{aligned} & \hline \text { B-MTA-1:1.5; B-IMP- } \\ & 1: 1.5 \end{aligned}$	Question FF8 would require a kind of meta-knowledge for the system to "reflect on what it knows". It would have been possible to simply query all of the Chemistry-specific slots for the two solutions, but initial experiments suggested that would not be fruitful. It would be worth investigating whether an analogy system (like Ken Forbus' Structure Matching Engine) would turn up interesting results.	$\begin{aligned} & \text { B-MTA-1:1.5; B-IMP- } \\ & 1: 1.5 \end{aligned}$
FF 09	Both SME1 and SME2 gave full credit for this question. The entry in Vulcan's Results Compilation is blank for SME3. Is it possible SME3 missed this question?	OTHER:1	Both SME1 and SME2 gave full credit for this question. The entry in Vulcan's Results Compilation is blank for SME3. Is it possible SME3 missed this question?	OTHER:1
FF 09a	The KB does not account for non-water solvents.	B-MOD-2:3	The KB does not account for non-water solvents.	B-MOD-2:3
FF 09b	Not submitted (the KB does not account for non-water solvents).	B-MOD-2:3	Not submitted (the KB does not account for non-water solvents).	B-MOD-2:3
FF 09c	The KB does not account for non-water solvents.	B-MOD-2:3	The KB does not account for non-water solvents.	B-MOD-2:3
FF 10	Question FF10 requires knowledge of "why things are done a certain way in the field of Chemistry", which is different from the pure Chemistry knowledge in the KB (though the former is certainly justified by the latter). This is a kind of metaknowledge not encoded at all in the KB.	$\begin{aligned} & \text { B-MTA-1:1.5; B-IMP- } \\ & 1: 1.5 \end{aligned}$	Question FF10 requires knowledge of "why things are done a certain way in the field of Chemistry", which is different from the pure Chemistry knowledge in the KB (though the former is certainly justified by the latter). This is a kind of metaknowledge not encoded at all in the KB.	$\begin{aligned} & \text { B-MTA-1:1.5; B-IMP- } \\ & 1: 1.5 \end{aligned}$
FF 11	Question FF11 asks for the difference in pH of two solutions, one of which has a 1000 times greater concentration of $\mathrm{H} 3 \mathrm{O}+$ The system invented two solutions with specific concentration and calculated their pH values to be 1 and 4 . Instead of subtracting the two values and concluding: "one value is 3 greater than the other", we divided the two values and concluded "one value is 4 times greater than the other". It seems harsh that SME1 and SME2 would give no credit.	B-ANJ-2:3	Question FF11 asks for the difference in pH of two solutions, one of which has a 1000 times greater concentration of H3O + The system invented two solutions with specific concentration and calculated their pH values to be 1 and 4 . Instead of subtracting the two values and concluding: "one value is 3 greater than the other", we divided the two values and concluded "one value is 4 times greater than the other". It seems harsh that SME1 and SME2 would give no credit, give that the justification clearly shows that the system knew the key to solving the question was in the logs of the concentration.	B-ANJ-2:2

Project Halo
Failure Explanation

Project Halo
Failure Explanation

Project Halo
Failure Explanation

Team:	SRI			
	Answer		Justification	
Question Type \& Number	Answer Failure Explanation	Brittleness Causes	Justification Failure Explanation	Brittleness Causes
FF 20			The system's answer was based on equilibrium, but the justification grounded out eventually in looking up memorized facts for comparative acid strengths. These facts do not (by default) trigger any justification (such facts are normally considered too specific a detail to include in justifications). In this case, justification would have been appropriate.	B-ANJ-3:1.5
FF 21	The system answered the question by showing specific reactions where HCO 3 - first acts as an acid, then as a base. The approach to solving the question could have been stated more clearly in the justification.	B-ANJ-3:2		
	Not submitted. Question FF22 requires knowledge of "why things are done a certain way in the field of Chemistry", which is different from the pure Chemistry knowledge in the KB (though the former is certainly justified by the latter). This is a kind of meta-knowledge not encoded at all in the KB.	$\begin{aligned} & \text { B-MTA-1:1.5; B-IMP- } \\ & \text { 1:1.5 } \end{aligned}$	Not submitted. Question FF22 requires knowledge of "why things are done a certain way in the field of Chemistry", which is different from the pure Chemistry knowledge in the KB (though the former is certainly justified by the latter). This is a kind of meta-knowledge not encoded at all in the KB.	$\begin{aligned} & \text { B-MTA-1:1.5; B-IMP- } \\ & 1: 1.5 \end{aligned}$
FF 23	A gap in the KB for computing pH when acids and bases react.	OTHER:3	A gap in the KB for computing pH when acids and bases react.	OTHER:3
FF 24	In the absence of appropriate knowledge to answer the question, the system merely reported the definition of monoprotic acid.	OTHER:3	In the absence of appropriate knowledge to answer the question, the system merely reported the definition of monoprotic acid.	OTHER:3
FF 25			The system was able to determine the equilibrium shift, but unable to justify it acceptably in concise terms.	B-ANJ-3:3

