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Abstract. Project Halo has the long-term objective of developing a digital 
Aristotle, i.e. a knowledge system that is able to answer questions in a particular 
domain and give explanations for its answers. In this paper we report about the 
Ontoprise contribution to the Halo Pilot Project, in which various competing 
ontology engineering methodologies and knowledge system capabilities have 
been investigated. Concerning the first, we describe how we dealt with 
engineered a significant set of laws from chemistry that interacted at different 
levels of generality and in varying orders. With regard to the latter, we report on 
the ability of our system to produce coherent and concise explanations of its 
reasoning. The importance of these two aspects can hardly be underestimated in 
the Semantic Web, as with future growth the interaction of large sets of laws 
will require dedicated management as well as the ability to let the user explore 
the trustworthiness of the ontology and the underlying data sources. 
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1 Introduction 
The Halo Pilot Project1 is the first phase of a projected multi-phase effort by Vulcan 
Inc.2 whose ultimate goal is the creation of a “digital Aristotle” , an expert tutor in a 
wide variety of subjects. The Halo Pilot was a six-month effort intended to assess the 
state-of-the-art in question-answering, with an emphasis on deep reasoning. The effort 
was structured around the challenge of responding to variants of AP Chemistry 
questions that focused on a portion of the “Advanced Placement test: Chemistry” .3 

Our system, OntoNova, answers questions from this AP test. OntoNova justifies 
its answers in detail-giving, natural-language explanations. The answers have been 
evaluated by expert graders according to the directives of the Educational Testing 
Services. Besides Ontoprise, two other contenders, Cycorp Inc.4 and SRI 
International5, have built competing systems.  
                                                           
1 http://www.projecthalo.com 
2 http://www.vulcan.com  
3 The Advance Placement Program gives students the chance to try college-level work while 

still in high school. If one gets a "qualifying" grade on the AP Exam, many colleges give 
credit or advanced placement for these efforts (http://apcentral.collegeboard.com/program). 

4 http://www.cyc.com 
5 http://www.sri.com 



There are a number of issues that make the Halo Pilot Project as a whole and 
OntoNova as one of its parts extremely relevant for the Semantic Web: 
1. The Halo Pilot constitutes a good match for some of the objectives that the 

Semantic Web community wants to achieve: 
a. Exploiting a rich ontology, 
b. Integrating various sources of knowledge, 
c. Giving justifications for deduced results. 

2. The Halo Pilot Project was a controlled experiment with a cleanly defined 
setting, independent evaluators, freely available resources and re-produceable 
results from. Such settings are useful to  

a. Quantify costs, and 
b. Quantify adequacy of methods. 

3. While the Halo Pilot still produced knowledge bases that appear to be too costly, 
it also showed that encoding knowledge by experts is “just” one order of 
magnitude more costly than writing the natural language text itself. 

 
While the description of the overall Halo Pilot Project is currently put together by a 
joint committee consisting of representatives of Vulcan Inc. and the three teams, we 
here focus on number 1 (shown in the list above) and in particular on the description 
of OntoNova and the conclusions we drew from our experiences building it. To do so, 
we first describe our technical approach to allow for the deduction of answers and 
justifications. In Chapter 3, we present the architecture of our knowledge base that 
produced the answers and justifications. Chapter 4 briefly compares the overall results 
of the project as far as necessary to frame the OntoNova system. We conclude with 
some lessons learned. 

2 Technical Approaches 
Our technical approach builds on two main pillars. First (cf. Section 2.1), we build on 
the OntoBroker® technology that we have developed and that we have continuously 
improved for over a decade now [Ang93,DEFS99]. A complex ontology with rules, 
multiple representations of objects, and call-out functionality to particular problem-
solving methods has been modeled in F-Logic [KLW95] to allow for infering answers 
posed to the system. Second (Secion 2.2), the deduction process has been extended 
and logged in F-Logic according to a particular trace ontology. This result could then 
be used by a second, but otherwise identical, inference engine in order to reason why 
a particular result had been achieved. 

2.1 Representing the chemistry domain in F-Logic 

Conceptual (or Ontology) modeling deals with the question of how to describe in a 
declarative and abstract way the domain information of an application, its relevant 
vocabulary, and how to constrain the use of the data, by understanding what can be 
drawn from it. Corresponding abstract representation languages support the 
understanding of such descriptions, their rapid development, their maintenance and 
their reuse.  



Ontology-Based Query and Answering in Chemistry: 
OntoNova @ Project Halo      3 

F-Logic (“F” stands for “Frames”) combines the advantages of a conceptual high-
level approach typical for frame-based languages and the expressiveness, the compact 
syntax, and well-defined semantics from logics. The original features of F-Logic 
[KLW95] include signatures, object identity, complex objects, methods, classes, 
inheritance, and rules. Our implementation of F-Logic by OntoBroker [DEFS99] 
introduced extensions and restrictions of the original features to make F-Logic a 
powerful and efficient language for many respective intended application domains.   

Basic concepts of chemistry are represented as concepts in F-Logic and are 
arranged in an isa-hierarchy: 

 
Molecule::Root. 
Reaction::Root. 
Ion::Molecule. 
Anion::Ion. 
Cation::Ion. 
AlkaliMetalCation::Cation. 
AlkalineEarthMetalCation::Cation. 
PrecipitationReaction::Reaction. 
GaseousReaction::Reaction.  

 
Properties of these concepts and relations between these concepts are represented by 
methods. E.g.: 

 
 IonicMolecule[ 
  hasName=>>STRING;  
  hasAnion=>>Anion;  
  hasCation=>>Cation;  
  hasAnionCoefficient=>>NUMBER; 
  hasCationCoefficient=>>NUMBER;  
  hasFormula=>>STRING]. 
 
HomogeniusMixture[hasComponent=>>PureSubstance]. 
 
Reaction[ 
  hasReactants=>>Molecule; 
  hasReactantnames=>>STRING; 
  hasProducts=>>Molecule; 
  hasProductnames=>>STRING; 
  hasEquation=>>STRING; 
  fromMixture=>>Mixture; 
  … 
  ]. 

 
Complex chemical relationships and axioms are represented by rules: 
 

rule burnhydrocarbon: FORALL F,V1,V2,V3  
burned(F):CombustionReaction[hasReactants->>{"O2",F}; 

hasProducts->>{"H2O","CO2"}] <-  
  burn(F) and hydrocarbon(F). 
 



This rule states that if a formula F represents a hydrocarbon and is burned then the 
reaction is identified as a combustion reaction with the reactants O2 and F and the 
products H2O and CO2 of the reaction equation .  

 
Within these rules very often the arithmetic built-in functions of OntoBroker have 
been used: 

 
FORALL R,C,C1,M,Re,Pr,L,L1,L2,Z   
 R[coefficients->>C;  

hasReactantsList->>L1;hasProductsList->>L2]  
  <-  reactants(R,Re) and products(R,Pr) and 
   and concatlists(Re,Pr,L) and  
   matrixbycols(L,M) and lessolve(M,C1) 
   wholenumbered(C1,C). 
 

In this rule the reactants and products of a reaction are taken as lists, a matrix for a 
linear equation system is generated, solved and from the whole-numbered solution 
vectors, the integer coefficients are generated. Using this approach the problem to 
balance a chemical equation is solved. 

The input for the answering process is either given as ground facts or as constants 
used in the query. For instance the input “methanol CH3OH is burned” is given by the 
F-Logic fact: 

 
burn("CH3OH"). 
 

Afterwards we can pose a question for the balanced reaction equation 
 
FORALL Eq,R <- R:Reaction[hasEquation->Eq]. 
 

which results in the following answer: 
 

R = burned("CH3OH") 
Eq = “2O2 + 3CH3OH -> 4H2O + 2CO2” 
 

As a conclusion it turned out that F-Logic is very well suited for capturing the 
chemical domain. In contrast to the other teams OntoNova provided the most compact 
encoding of the knowledge base to cover the domain. 

OntoBroker provides means for efficient reasoning in F-Logic, performing a 
mixture of forward and backward chaining based on the dynamic filtering algorithm 
[KL86] to compute (the smallest possible) subset of the model for answering the 
query. During forward chaining, not only single tuples of variable instantiations but 
sets of such tuples are processed. It is well-known that set-oriented evaluation 
strategies are much more efficient than tuple-oriented ones. The semantics for a set of 
F-Logic statements is then defined by a transformation process of F-Logic into 
normal logic (Horn logic with negation) and the well-founded semantics [GRS91] for 
the resulting set of facts and rules and axioms in normal logic. 
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2.2 Answer Justification 

There are many reasons that users and applications in the Semantic Web need to 
understand the provenance of the information they get back from applications. One 
major motivating factor is trust. Trust and reuse of retrieval and deduction processes 
is facilitated when explanations are available. Ultimately, if users and/or applications 
are expected to trust, use and reuse application results, potentially in combination 
with other information or other application results, users and agents may need to 
understand where the derived and source information came from at varying degrees of 
detail. This information, sometimes called provenance, may be viewed as meta-
information about given information. Provenance information may include source 
name, date and author(s) of last update, authoritativeness of the source, degree of 
belief, degree of completeness, etc. 

Even more, additional types of information may be required if users need to 
understand the meaning of terms or implications of query answers. If applications 
make deductions or otherwise manipulate information, users may need to understand 
how deductions were made and what manipulations were done. Information 
concerning derived or manipulated information may include term or phrase meaning, 
term inter-relationships (ontological relations including subclass, super-class, part-of, 
etc.), the source of derived information, reasoner description and others. In [McG03] 
an overview about requirements for answer explanation components may be found. 

Recognition of the importance of explanation components for reasoning systems 
existed in a number of fields for many years. For example, expert systems researchers 
understood the need for systems that understood their reasoning processes and could 
generate explanations in a language understandable to its users [SHORT76]. A more 
detailed description about requirements and the necessity of answer explanation 
components can be found in [McG96], literature on explanations for expert systems 
[SWA91], theorem proving explanations [FeMi87] or [BOY95]. 

2.2.1 Approach 
Our approach for answer justification is based on meta-inferencing. While 

processing a query the inference engine is producing a log-file of the proof tree for 
any given answer. This proof tree itself is represented in F-Logic. It contains the 
instantiated rules that were successfully applied to derive an answer. This file acts as 
input for a second inference run, where answers are produced, that are explaining the 
proof tree in natural language and by that, how the answer to the original query was 
inferred. 

We shortly will illustrate this approach with a sample question. The question asks 
for the Ka value if mole and pH of a substance is given 

 

Encoded question: 
<- exists Ka MPhKa(0.2,3.0,Ka). 

 

An extract from the log-file of the proof tree: 
a15106:Instantiation[ofRule->>kavalueMPhKa;  

dependsOnInstantiation->>{a15092}; 



instantiatedVars->>{i(M,0.2),i(PH,3.0), 
i(Ka,4.99E-6),i(H,0.0010),i(HH,1.0E-6)}]. 

a15092:Instantiation[ofRule->>phvaluephH; 
 instantiatedVars->>{i(H,0.0010),i(Ph,3.0),i(R,-3.0)}]. 

The first statement means the rule kavalueMPhKa had been applied at the point in 
time logged here. Then, the variables M had been instantiated by 0.2, PH by 3.0, Ka 
by 4.99E-6, H by 0.0010 and HH by 1.0E-6 respectively. 
 
Rules which are important for justifying results were named like “kavalueMPhKa” or 
“phvaluephH”. For these rules certain explanation rules are formulated which will be 
applied in the second, meta-inference run. Frequently the named rules corresponded 
to important chemistry laws, which would also be found in the text book, while less 
important rules were typically required for technical reasons, e.g. in order to translate 
between two alternative representations of the same content, but were not important 
for the human to understand the solution proposed by the system. 

 
For the first named rule of the proof tree, the corresponding explanation-rule is: 

FORALL I,M1,PH1,Ka1,H1,HH1,EX1,Ka1R  
explain(EX1,I) <- 

I:Instantiation[ofRule->>kavalueMPhKa;  
instantiatedVars->>{i(M,M1),i(PH,PH1), 
i(Ka,Ka1),i(H,H1),i(HH,HH1)}]and  
dround(Ka1,2,Ka1R) and EX1 is  
("The equation for calculating the acid-dissociation 
constant Ka for monoprotic acids is <b>Ka=[H+][A-
]/[HA]</b>. For monoprotic acids the concentrations for 
hydrogen [H+] and for the anion [A-] are the same: 
<b>[H+]=[A-]</b>. Thus, we get <b>Ka= "+H1+" * "+H1+" / 
"+M1+" = "+Ka1R+" </b>for a solution concentration 
<b>[HA] = "+M1+" M</b>."). 

An explanation-rule is specified by its reference to the rule (kavalueMPhKa), by 
accessing the instantiations of the variables of the answer producing rule, e.g. M1 
accesses the instantiation of variable M, and a text referring to these variables which 
is presented in the explanation. 
 
These explanation rules are applied to the proof tree of our example and produce the 
following justification output: 
 

o The equation for calculating the acid-dissociation constant Ka for 
monoprotic acids is Ka=[H+][A-]/[HA]. For monoprotic acids the 
concentrations for hydrogen [H+] and for the anion [A-] are the 
same: [H+]=[A-]. Thus, we get Ka= 0.0010 * 0.0010 / 0.2 = 5.0E-6 
for a solution concentration [HA] = 0.2 M.  

 The equation for calculating the pH-value is ph=-log[H+]. 
Thus we get pH-value ph = 3, H+ concentration [H+] = 
0.0010.  
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2.2.2 Advantages of the Approach 
This two-step process for creating explanations allows for applying the full power 

of inferencing to generate explanations. For OntoNova, we have developed an entire 
knowledge base for this purpose. Thus, one may (i) integrate additional knowledge, 
(ii) reduce redundancies of explanations, (iii) abstract from fine-grained explanations, 
and (iv) provide personalized explanations. 

(i), when the proof tree does not contain enough information in itself, additional 
information will be needed to create comprehensible explanations. In our context, 
e.g., the proof tree contains the formulae of the different substances. However, in the 
explanations the names of the formulae are often necessary to produce understandable 
justifications. The generation of names from formulae then requires additional 
information not found within the proof tree. 

(ii), in knowledge bases different paths often lead to the same result. For instance, 
the acidity order of two substances may be determined by the pH-values that may be 
computed from the amount of substances in aqueous solutions – or they may be given 
by qualitative criteria like the number of oxygen elements in the formulae of the 
substances. Both criteria lead to the same ordering. As a consequence, there are two 
different explanation paths for the same result. An explanation rule may rank these 
two explanation paths and ignore one of them when formulating the justification. 
Thus, redundancies in generated explanation may be reduced.  

(iii), often it is necessary to come to different abstractions of explanations. E.g. for 
the purpose of debugging the knowledge base, a very fine-grained explanation level is 
necessary, while for an expert a low-grained explanation level is sufficient. The single 
inference steps and thus the proof tree, which is a representation of these single 
inference steps, provide the finest resolution of explanations. Additional rules may 
summarize these steps and may thus produce higher abstracted explanations. E.g. in 
our domain such rules may summarize the three different steps of a reaction like the 
(a) decomposition of the substances into their ionic compounds, (b) the composition 
of an insoluble substance out of these compounds and (c) the precipitation of the 
resulting substance from the solution as a precipitation reaction. 

(iv), the three means (i)-(iii) just mentioned may all be used for generating 
specialized explanations for different contexts and for generating personalized 
explanations. Domain experts need other explanations than freshmen or novices and 
different types of explanations have to be given in different functional situations and 
contexts like science, research or in AP exam, respectively. 

3. Encoding and Knowledge Base Architecture 

3.1 Encoding of the KB  

For testing purposes in the dry run Vulcan Inc. provided 50 syllabus questions for 
each team. The encoding of the corpus (80 pages from [BLB2003]) has been done in 
three different phases. During the first phase the knowledge within the corpus has 
been encoded into the ontology and into rules, without considering the 50 syllabus 
questions. This knowledge has been tested with some 40 exercises of [BLB2003]. For 



each of these exercises an encoded file and an output file by pair have been created. 
These pairs have been used for automatically testing the knowledge base.  

In the next phase the syllabus questions have been tested with a covering of around 
30% of these questions. During this phase the knowledge base has been refined until 
coverage of around 70% of these questions has been reached. Additionally, in parallel 
during this phase, the explanation rules have been encoded. In the so-called dry run 
itself, the encoded syllabus questions have been sent to Vulcan to test the installed 
systems. The remaining time to the challenge run has been used to refine the encoding 
of the knowledge base and the explanation rules. During the entire process, the library 
of test cases has been extended and used for automatic testing purposes. This ensured 
stability of the knowledge base against changes. 

3.2 Question Encoding 

The syllabus contained two major types of questions: multiple choice questions and 
detailed answer questions.  

 
Multiple Choice. An example for a multiple choice question is the following: 
  

Which of the following compounds will produce a gas when HCl 
is added to the solid compound? HCl is a strong acid 
producing a yellow-green colored gas above the acid solution. 

a. Ba(OH)2 (s)  
b. CaCO3 (s)  
c. CuSO4 (s)  
d. Na3PO4(s)  
e. NaCl(s)  

 
For the multiple choice section, two different encoding schemas have been used. The 
first schema encoded the multiple choice questions where our knowledge base could 
conclude the correct answer. E.g.: 

 
//input facts 
m1:Mixture[hasComponents->>{"HCl","Ba(OH)2"}]. 
m5:Mixture[hasComponents->>{"HCl","NaCl"}].  
// encoding of the options 
answer("A") <- exists P P:GaseousReaction[fromMixture->>m1].  
answer("E") <- exists P P:GaseousReaction[fromMixture->>m5]. 
// query for the correct option 
FORALL X <- answer(X).        
          

The second schema encoded multiple choice questions where all but one of the 
options could be excluded by the knowledge base: 

// all options 
possibleanswer("A"). 
… 
possibleanswer("E").  
// encoding wrong options 
FORALL X wronganswer("A") <- checkequation(ra,X).   
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… 
FORALL X wronganswer("E") <- checkequation(re,X). 
// exclude wrong options 
FORALL Answer <-  

possibleanswer(Answer) and not wronganswer(Answer).  
 

Detailed Answer Questions. The detailed answer questions, for which an exact 
answer like the pH-value had to be delivered, have been encoded as direct queries to 
the knowledge base. E.g.: 

// give the pH-value of the buffer solution 
FORALL Ph <- m1:BufferSolution[hasPHValue->>Ph].  

3.3 Architecture of the Knowledge Base 

The knowledge base has a three-level architecture as shown in figure 1.  
 

 
 
Figure 1: Architecture of the knowledge base 
 
The upper level contains the ontological information about concepts like elements, 
reactions, substances and mixtures together with their attributes and relationships. 
This layer provides the domain vocabulary and the domain structure and is target of 
the queries posed to the system. Let us illustrate this by an example. 

The ontology for instance defines the concept mixture with attributes hasPHValue, 
hasComponent, hasMole, and hasQuantitiy. These attributes describe the formulae, 
the moles and the quantities of the components of the mixture. The attribute 

 Ontology 

Instances 
basic facts 
like 
elements,... 

 

acidorder

calculate
PH

-value
equilibrium
acidorder
solubility
balancing

reactions

.. .. .. .. .. .. .... .. .. basic chemical 
operations 
using 
predicates like 
MPhKa and 
rules 

ontological 
access 



hasPHValue represents the pH-value of the mixture. Given such a mixture a query 
like 

 FORALL X <- m1:Mixture[hasPHValue->>X]. 
results in the pH-value of the mixture. 

For the different types of mixtures different rules describe this pH-value. For 
instance, for strong acid-base titrations the pH-value is described by the following 
rule which represents one basic chemical operation (variable quantifications are 
skipped): 
 

strongacidstrongbasetitration(Acid,AcidQuantity,AcidMole, 
Base,BaseQuantity,BaseMole,PH) 
<- 
 A:StrongAcid[hasFormula->>Acid] 

and B:WeakBase[hasFormula->>Base] and 
 multiply(BaseQuantity,BaseMole,OHMole) and  
 multiply(AcidQuantity,AcidMole,HMole) and 
 greater(HMole,OHMole) and  
 add(AcidQuantity,BaseQuantity,Volume) and 
 add(HAfterReaction,OHMole,HMole) and  
 multiply(HConc,Volume,HAfterReaction) and 
 phH(HConc,PH). 

 
Please note that this rule uses in its body another basic chemical operation by the 
predicate phH. 

This basic chemical operation is now attached to the ontology and thus defines the 
attribute hasPHValue of a mixture: 
 

M:Mixture[hasPHvalue->>PH]  
<- M:Mixture[hasComponent->>{F1,F2}; hasQuantity->>c(F1,Q1); 

hasQuantity->>c(F2,Q2); hasMole->> c(F1,M1);  
hasMole->> c(F2,M2)] and 
strongacidbasetitration(F1,Q1,M1,F2,Q2,PH). 

 
The advantages of this three-level architecture are twofold. First the basic chemical 
operations are nearly independent from each other. This strongly reduces complexity 
of the knowledge base and the different chemical operations are decoupled and can be 
developed and tested independently. So each chemical operation is a stand-alone 
knowledge chunk.  

Accessing the values using the ontology on the other hand frees the encoder from 
knowing all the specialized predicates and on the other hand enables an access to the 
different information pieces in a way that is much closer to natural language than the 
predicates of the basic chemical operations. 

3.4 Encoding Sensitivity 

Related to the methodology discussion above, it is worth to note that answer 
justification showed some sensitivity against our encoding. This is the logical 
consequence of our approach. As an example, one may consider the following 
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example of two different encodings for the same problem, and thus having different 
justification outputs: 

 
Original question:  
 

The pH of a 1.0M solution of HCl is: 
a. 1.0  
b. 0.1  
c. 0.0  
d. less than zero  
e. between 0 and 1  

 
Encoded question version a) 
 

m1:Mixture[hasComponents->>"HCl"; hasMolarity->>c("HCl",1)]. 
answer("A") <- m1[hasPHValue->>1.0]. 
answer("B") <- m1[hasPHValue->>0.1]. 
answer("C") <- m1[hasPHValue->>0.0]. 
answer("D") <- exists Ph m1[hasPHValue->>Ph]  

and less(Ph,0.0). 
answer("E") <- exists Ph m1[hasPHValue->>Ph]  

and less(Ph,1.0) and greater(Ph,0.0). 
FORALL Answer <- answer(Answer). 

 
Here we defined a mixture of HCl to be able to determine the pH value. Then we 
compared the calculated pH to the given values. 

 
Answer version a): C 
 
Justification version a) 

• The equation for calculating the pH-value is ph=-log[H+]. Thus we get pH-
value ph = 0, H+ concentration [H+] = 1. 

• In the given mixture the concentration of H3O-molecules(atoms) is 1 M. 
o HCl is a strong monoprotic acid that completely splits into H+ 

and Cl-. A 1-molar mixture of HCl has therefore a 1-molar 
concentration of H+ and Cl- molecules. 

 
Encoded question version b) 
 

answer("A") <- phvalue(1,"HCl",1). 
answer("B") <- phvalue(0.1,"HCl",1). 
answer("C") <- phvalue(0,"HCl",1). 
answer("D") <- exists Ph phvalue(Ph,"HCl",1)  

and less(Ph,0.0). 
answer("E") <- exists Ph phvalue(Ph,"HCl",1)  

and less(Ph,1.0) and greater(Ph,0.0). 
FORALL Answer <- answer(Answer). 

 



In this encoding approach, we used the basic operation phvalue to compute the pH 
value of the given substance in an aqueous solution. Then we compared the calculated 
pH to the given values. 
Answer version b): C 
 
Justification version b) 
• The pH-value of an acid is calculated by ph=-log[H+]. For HCl and the given 

data this leads to pH-value ph=0,H+ concentration [H+]=1,Molarity M=1. 
o As HCl is a strong acid (see page 122, table 4.2) and fully dissociates in 

water, the calculation of [H+] or molarity M is based on formula 
[H+]=1*M. With the given data this leads to H+ concentration [H+]=1, 
Molarity M=1 

 molecule HCl splits into cation H and into anion Cl  

4 Challenge Results 
After having encoded four chapters of [BLB2003] the competing systems have been 
sequestered by Vulcan Inc. and every team got 100 challenge questions which had to 
be encoded in each teams own representation formalism. After 14 days the encoding 
documents have been sent to Vulcan Inc. and each teams’ system had to process these 
questions. In the following the results of this challenge run are presented. 

4.1 Scores 

In general, all teams showed up with similar good scores in the challenge run. There 
was no time limit for the answering process, so that the teams’ systems did not take an 
AP exam under original conditions. The aim of the run was to test the general ability 
of the systems to answer questions of a complex domain. 
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Figure 2: Challenge answer scores 
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Figure 3: Challenge justification scores 

4.2 Fidelity 

The project participants joined a fidelity committee which had the task to judge about 
the fidelity of the encodings. Most of the encodings were not matter of fidelity 
concerns. Nevertheless, some encodings not directly encoded the original information 
of/in the challenge question. Most violations simply ignored irrelevant information 
that was not encoded. Some cases encoded the formula of substances instead of their 
names and vice versa, as the substance name was not available but the formula could 
be still processed to derive an answer. As far as the question was encodable and the 
question’s subject was covered by the KB, no major fidelity conflicts occurred. An 
example for a fidelity concern was stated for encoding the multiple choice question 
12. In this case the knowledge engineer has interpreted that if a substance reacts with 
oxygen the corresponding reaction is a combustion reaction. Thus additional 
knowledge from the knowledge engineer is used here and a fidelity concern occurred: 

 
When methane, CH4, gas reacts with oxygen, the following  

changes occur 
burn("CH4"). // has been interpreted as combustion reaction  

4.3 Coverage 

Coverage means to what extend the questions could be encoded in the representation 
language. Coverage of challenge questions strongly correlates with the type of 
question. We had strong coverage in sections that we experienced in the sample 
questions for training purposes. We had 100% coverage in the MC-section and some 



90% in the Detailed Answer Section (DAS). Sparse coverage was shown with 
unknown question types like in the Free Answer Section, where we only covered 
some 20% of the questions. 

4.4 Brittleness 

One outcome of the project is a brittleness taxonomy which classifies failures in 
different failure classes. As a summary, one can state that the major part of failed 
answers belongs – in the case of OntoNova – to brittleness type “Modeling Error” 
(knowledge engineer fails to capture domain information properly in their modeling). 
This is true for answer generation and answer justification, respectively.  

For example, we received the correct answer for the multiple choice question no. 
19 (MC 19), but lost points for missing explanations. Though the explanation rule in 
general existed, there was a typo in the rule that prevented the firing of the rule. There 
were some other examples, where explanation rules were missing, such as in MC 2. 
MC 11 is another example where parts of the knowledge base had bugs, but 
explanations fit fairly well. MC 23 is seen as an example where the corresponding 
part of the domain to answer the question was not modeled at all. All these examples 
are modeling errors.  

The second, major class of errors was the “Unexpected Question Type” . This is 
especially true for the Free Form Section. The reason for the inability to answer these 
types of questions is based in the modeling of the knowledge base. In these cases the 
knowledge engineer did not forget to model a part of the domain, but failed in 
modeling the different kinds of usage and application of the knowledge base. In these 
cases one could observe that certain operations could be done in a certain direction, 
but could not be operated in the other direction. For example, the calculation of the 
pH-value could be done by given ka-values but not vice versa: 
 

Ascorbic acid, H2C6H6O6, is a diprotic acid  
with a Ka1 value of 8.9 x 10-5.  

The pH of a 0.125 M solution of ascorbic acid is 2.48 and the 
concentration of C6H6O62- is 1.6 x 10-12 M.  

Determine the value of Ka2.5 

4.5 Performance 

The processing performance of OntoNova has been much faster than its competitors, 
depending on the systems used to perform the challenge run. Our system for the 
official challenge run required about an hour to process the encodings. For a second, 
optional and not sequestrated run, we slightly improved the knowledge base and 
brought down processing time to under 10 minutes.  
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Figure 4 : Run times 

5 Conclusion 
From the development of OntoNova we gained a range of insights valuable for 
traditional knowledge systems – as well as for the Semantic Web. 

 
1. F-Logic appeared as a representation language which is very well suited to be 

used in complex, rule-intensive domains. One obviously required addition to 
this language could be a package construct which divides the knowledge base 
into different parts. Our addition of namespace constructs is one step into F-
Logic towards this objective (cf. [Onto03]). 

2. Our inference engine OntoBroker has performed very well in answer and 
justification generation.  

3. We also noticed that we have to improve our knowledge modeling 
environment by a better support for rule editing and rule debugging.  

4. Another insight was that at the end of the knowledge base modeling domain, 
experts should be able to extend and modify the knowledge base on their own. 
For that purpose, a two-step process will be necessary. First the basic building 
blocks (like basic representation of formulas, basic chemical operations etc.) 
must be developed by a knowledge engineer in a general development 
environment like OntoEdit. In a second step such an environment must be 
specialized for a tool which comprises the special view of the domain expert 
and gives him the elementary building blocks as modeling primitives.  

 
Concerning the evaluation results, Ontoprise finished second according to the 

scores in answer generation and justification, respectively (see 4.1 Scores). This result 
seems very formidable, because we used just two person-years instead of the four 
person years consumed by the other two teams, and by that showed up with half the 



costs for encoding. Compared to other teams, our encodings are very compact and do 
not require specific hardware resources to be processed (experiments were performed 
on a standard current version of a Linux machine). 

The processing performance of OntoNova has been faster than its competitors by 
factors between 5 and 30, depending on the systems used to perform the challenge 
run. The challenge run could have been done in some three to four minutes using a 
special twin-server that would have done answer generation and justification in 
parallel instead of sequentially. Additionally, we could have applied several 
optimization strategies to improve performance, so that there is much more potential 
for improvement matters – and will be needed for the Semantic Web to scale in size, 
scope and trust – by the advancement of OntoNova in the Halo Pilot Project. 
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