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Abstract 

Vulcan Inc.’s Project Halo is a multi-staged effort to create a Digital Aristotle, an 

application that will encompass much of the world's scientific knowledge and be capable 

of applying sophisticated problem-solving to answer novel questions.  Vulcan envisions 

two primary roles for the Digital Aristotle: as a tutor to instruct students in the sciences, 

and as an interdisciplinary research assistant to help scientists in their work. 

As a first step towards this goal, we have just completed a six-month pilot phase, 

designed to assess the state of the art in applied Knowledge Representation and 

Reasoning (KR&R). Vulcan selected three teams, each of which was to formally 

represent 70 pages from the Advanced Placement (AP) chemistry syllabus and deliver 

knowledge based systems capable of answering questions on that syllabus. The 

evaluation quantified each system’s coverage of the syllabus in terms of its ability to 

answer previously unseen questions and to provide human-readable answer justifications. 

These justifications will play a critical role in building user trust in the question-

answering capabilities of the Digital Aristotle. 

Prior to the final evaluation, a “failure taxonomy” was collaboratively developed in 

an attempt to standardize failure analysis and to facilitate cross-platform comparisons. 

Despite differences in approach, all three systems did very well on the challenge, 

achieving performance comparable to the human median. The analysis also provided key 

insights into how the approaches might be scaled, while at the same time suggesting how 

the cost of producing such systems might be reduced.  This outcome leaves us highly 

optimistic that the technical challenges facing this effort in the years to come can be 

identified and overcome. 

This paper presents the motivation and long-term goals of Project Halo, describes in 

detail the month-month pilot phase of the project, its KR&R challenge, empirical 

                                                   
1 Full support for this research was provided by Vulcan Inc. as part of Project Halo. For more information, 
visit our Web site at www.projecthalo.com . 
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evaluation, results and failure analysis. The pilot’s outcome is used to define challenges 

for the next phase of the project and beyond. 

 

1. Introduction 

1.1 Project Halo 

Aristotle (384-322 B.C.E) was remarkable for the depth and scope of his knowledge, 

which included mastery of a wide range of topics from medicine and philosophy to 

physics and biology. Aristotle not only had command over a significant portion of the 

world’s knowledge, but he was also able to explain this knowledge to others, most 

famously, though briefly, to Alexander the Great. 

Today, the knowledge available to humankind is so extensive that it is not possible 

for a single person to assimilate it all. This is forcing us to become much more 

specialized, further narrowing our worldview and making interdisciplinary collaboration 

increasingly difficult. Thus, researchers in one narrow field may be completely unaware 

of relevant progress being made in other neighboring disciplines.  Even within a single 

discipline, researchers often find themselves drowning in new results. MEDLINE®2, for 

example, is an archive of 4,600 medical publications in 30 languages, containing over 

twelve million publications, with 2,000 added daily.   

Making the full range of scientific knowledge accessible and intelligible might 

involve anything from the simple retrieval of facts, to answering a complex set of 

interdependent questions and providing appropriate justifications for those answers. 

Retrieval of simple facts might be achieved by information extraction systems searching 

and extracting information from a large corpus of text, e.g., [1]. But aside from the 

simplicity of the types of questions such advanced retrieval systems are designed to 

answer, they are only capable of retrieving “answers” – and justifications for those 

answers – that already exist in the corpus. Knowledge-based question–answering 

systems, by contrast, though generally more computationally intense, are capable of 

generating answers and appropriate justifications and explanations that are not found in 

texts. This capability may be the only way to bridge some interdisciplinary gaps where 

little or no documentation currently exists.  

Project Halo is a multi-staged effort to create a Digital Aristotle (DA), an application 

encompassing much of the world's scientific knowledge and capable of answering novel 

questions through advanced problem-solving. The DA will act both as a tutor capable of 

                                                   
2 MEDLINE is the National Library of Medicine's premier bibliographic database covering the fields of 
medicine, nursing, dentistry, veterinary medicine, the health care system, and the preclinical sciences. 
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instructing students in the sciences and as a research assistant with broad interdisciplinary 

skills, able to help scientists in their work. The final DA will differ from classical expert 

systems in four important ways: 

• Speed and ease of knowledge formulation: Classical expert systems required years 

to perfect and highly skilled knowledge engineers to craft them; the DA will provide 

tools to facilitate rapid knowledge formulation by domain experts with little or no 

help from knowledge engineers. 

• Coverage: Classical expert systems were narrowly focused on the single topic for 

which they were specifically designed; the DA will over time encompass much of the 

world’s scientific knowledge. 

• Reasoning techniques: Classical expert systems mostly employed a single inference 

technology; the DA will employ multiple technologies and problem solving methods. 

• Explanations: Classical expert systems produced explanations derived directly from 

inference proof trees; the DA will produce concise explanations, appropriate to the 

domain and the user’s level of expertise.  

Adoption of the Project Halo tools and methodologies by communities of subject matter 

experts is critical to the success of the DA. These tools will empower scientists and 

educators to build the peer-reviewed machine-processable knowledge that will form the 

foundation for the DA.  

1.2 The Halo Pilot 

The pilot phase of Project Halo was a six-month effort to set the stage for a long-term 

research and development effort to create the Digital Aristotle. The primary objective 

was to evaluate the state of the art in applied KR&R systems. Understanding the 

performance characteristics of these technologies was considered to be especially critical 

to the DA, as they are expected to form the basis of its reasoning capabilities. The first 

objectives were to identify and engage leaders in the field and to develop suitable 

evaluation methodologies; the project was also designed to help in the determination of a 

research and development roadmap for KR&R systems. Finally, the project adopted 

principles of scientific transparency aimed at producing understandable, reproducible 

results.  

Vulcan undertook a formal bidding process to identify teams to participate in the 

pilot. Criteria for selection included a well-established and mature technology and a 

world-class team with a track record of government and private funding. Three teams 

were contracted to participate in the evaluation: a team led by SRI International with 
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substantial contributions from Boeing Phantom Works and the University of Texas at 

Austin; a team from Cycorp; and a team from Ontoprise.  

Significant attention was given to selecting a proper domain for the evaluation. It 

was important, given the limited scope of this phase of the project, to adapt an existing, 

well-known evaluation methodology with easily understood and objective standards.  

First a decision was made to focus on a “hard” science and more specifically, on a 

textbook presentation of some part of that science.  Several standardized test formats 

were also examined.  In the end, a 70-page subset of introductory college-level Advanced 

Placement (AP) chemistry was selected because it was reasonably self-contained and did 

not require solutions to other hard AI problems, such as  representing and reasoning with 

uncertainty, or understanding diagrams [2]. This latter consideration, for example, argued 

against selecting physics as a domain.   

Table 1 lists the topics in the chemistry syllabus. Topics included: stoichiometry 

calculations with chemical formulas; aqueous reactions and solution stoichiometry; and 

chemical equilibrium. Background material was also identified to make the selected 

chapters more fully self-contained3. 
Subject Chapters Sections Pages 
Stoichiometry: Calculations with Chemical 
Formulas 

3 3.1 – 3.2 75 - 83 

Aqueous Reactions and Solution Stoichiometry 4 4.1 – 4.4 113 - 133 
Chemical Equilibrium 16 16.1 – 16.11 613 - 653 

 Table 1 Course Outline for the Halo Challenge 

This scope was large enough to support a large variety of novel, and hence 

unanticipated, question types. One analysis of the syllabus identified nearly 100 distinct 

chemistry laws, suggesting that it was rich enough to require complex inference. It was 

also small enough to be represented relatively quickly – which was essential because the 

three Halo teams were allocated only four months to create formal encodings of the 

chemistry syllabus. This amount of time was deemed sufficient to construct detailed 

solutions that leveraged the existing technologies, yet was too brief to allow significant 

revisions to the teams’ platforms. Hence, by design, we were able to avoid undue 

customization to the task domain and thus to create a true evaluation of the state of the art 

of KR&R technologies. 

Nevertheless, at the outset of the project it was completely unclear whether 

competent systems could be built. In fact, Vulcan’s secret intent was to set such a high 

bar for success that the experiment would expose the weaknesses in KR&R technologies 

                                                   
3 Sections 2.6-2.9 in chapter two provide detailed information. Chapter 16 also requires the definition of 
moles, which appears in section 3.4 pp 87-89, and molarity, which can be found on page 134. The form of 
the equilibrium expression can be found on page 580, and buffer solutions can be found in section 17.2. 
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and determine whether these technologies could form the foundation of the Digital 

Aristotle. The teams accepted the challenge with trepidation caused by several factors, 

including the mystery of working in a new domain with the novel performance task of 

answering difficult, and highly varied Advanced Placement questions and generating 

coherent explanations in English – all within four months.  

2. The Technology 

The three teams had to address the same set of issues: knowledge formation, question 

answering, and explanation generation, [3], [4], [5]. They all built knowledge bases in a 

formal language and relied on knowledge engineers to encode the requisite knowledge. 

Furthermore, all the teams used automated deductive inference to answer questions. 

Despite these high-level similarities, the teams’ approaches differed in some interesting 

ways, especially with respect to explanation generation.  

 

 

 

 

 

 

 

 

 

 

 

Knowledge Formation 

Each system achieved significant coverage of the parts of the domain represented by the 

syllabus, and was able to use that coverage to answer many novel questions. All three 

systems used class taxonomies, such as the one illustrated in Figure 1, to organize 

Figure 1: Extract from Cyc’s ontology of acids and bases.  These nodes represent second order 
collections for organizing specific substance types; edges represent subsumption relationships. 
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concepts such as acids, physical constants and reactions, represented properties of classes 

using relations, and used rules to represent complex relationships. 
 

Domain-driven vs. question-driven knowledge formation 

Recall that Vulcan released a course description consisting of 70 pages of a chemistry 

textbook and 50 sample questions. The teams had the choice of building knowledge bases 

either starting from the syllabus text or from the sample questions or working from both 

in parallel. Ontoprise and Cyc approached knowledge formation in a target-text-driven 

approach, and SRI approached knowledge formation in a question-driven approach.  

Ontoprise encoded knowledge in three phases. During the first phase the knowledge 

within the corpus was encoded into the ontology and rules without considering any 

sample test questions.  They then tested this knowledge on test questions that appeared in 

the text book – which were different from the sample set released by Vulcan.  In the 

second phase, they tested the sample questions released by Vulcan. The initial coverage 

they observed was around 30 percent. During this phase, they refined the knowledge base 

until coverage of around 70 percent was reached. In the second phase, they also coded the 

explanation rules. In the third phase, they refined the encoding of the knowledge base and 

the explanation rules. 

Cycorp used a hybrid approach, first concentrating on representing the basic 

concepts and principles of the corpus, and gradually shifting over to a question-driven 

approach.  The intent behind this approach was to avoid over-fitting the knowledge to the 

specifics of the sample questions available.  This strategy met with mixed success: in the 

second phase, considerable re-engineering of the knowledge was required to meet the 

requirements of the questions without compromising its generality.  This was partly 

because the textbook adopted an example-based approach with somewhat varied depth, 

whereas the process of knowledge formation would have benefited from a more 

systematic and uniform coverage. 

SRI’s approach for knowledge formation was highly question-driven.  Starting from 

the 50 sample questions, they worked backwards to identify what pieces of knowledge 

would be needed to solve them.  Interestingly, the initial set of questions was found to 

require coverage of a substantial portion of the syllabus.  Once the coverage for the 

sample set of questions was achieved, they looked for additional sample questions from 

the available AP tests.  Working with this additional set of sample questions, they 

ensured the robustness of their initial coverage. 
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Reliance on Domain-independent Ontologies 

Both Cycorp and SRI relied on their pre-existing knowledge base content.  Ontoprise 

started from scratch. Not surprisingly, the top level classes in the Ontoprise knowledge 

base are chemistry concepts such as elements, mixtures, and reactions.  Interestingly, the 

Ontoprise knowledge base did not draw on well-known ontological distinctions such as 

object type versus stuff type. Described here is a more detailed account of how SRI and 

Cycorp leveraged their prior knowledge base, and the issues that arose in doing so. 

For several years the SRI team has been building a library of representations of 

generic entities, events, and roles [6] and they were able to reuse parts of this for the Halo 

pilot. In addition to providing the types of information commonly found in ontologies 

(class-subclass relations and instance-level predicates), their representations include sets 

of axioms for reasoning about instances of these classes. The portion of the ontology 

dealing with properties and values was especially useful for the Halo pilot. It includes 

representations for numerous dimensions (e.g., capacity, density, duration, frequency, 

quantity) and values of three types: scalars, cardinals, and categoricals. This ontology 

also includes methods for converting among units of measurement, [7] which their 

system used to align the representation of questions with representations of terms and 

laws, even if they are expressed with different units of measurement. 

Cycorp publishes an open-source version of Cyc (available from 

http://www.opencyc.org/) which was used as a platform for the OpenHalo system.  Cyc’s 

knowledge consists of terms, relations, and assertions.  The assertions are organized into 

a hierarchy of microtheories that permit the isolation of specific assumptions into a 

specific context. OpenHalo utilized OpenCyc’s 6,000 concepts, but was augmented for 

Project Halo with 1,000 new concepts and 8,000 existing concepts selected from the full 

Cyc knowledge base.  A significant fraction of the latter formed part of the compositional 

explanation-generation system.  

Reliance on Domain Experts 

Cycorp and Ontoprise relied on their knowledge engineers to do all of their knowledge 

formation, while SRI relied on a combined team of knowledge engineers and chemistry 

domain experts. 

Team-SRI used four chemists to help with the knowledge formation process, which 

was done in the following steps.  First, ontological engineers designed representations for 

chemistry content, including the basic structure for terms and laws, chemical equations, 

reactions, and solutions. Second, chemists consolidated the domain knowledge into a 35-

page compendium of terms and laws summarizing the relevant material from 70 pages of 
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a textbook. While doing this, the chemists were asked to start from the premise to be 

proven, and trace the reasoning in a backward chaining manner to make it easy for 

knowledge engineers to encode this in the knowledge base. Third, knowledge engineers 

implemented that knowledge in KM, creating representations of about 150 laws and 65 

terms. While doing so, they compiled a large suite of test cases for individual terms and 

laws as well as combinations of them. This test suite was run daily. Fourth, the 

“explanation engineer” augmented the representation of terms and laws to generate 

English explanations. Finally, the domain experts reviewed the output of the system for 

correctness and understandability. 

Ontoprise knowledge engineers learned the domain and built the knowledge base, 

primarily starting with understanding and modeling the examples given in the textbook. 

They compiled a set of 41 domain concepts, 582 domain instances, 47 domain relations, 

and 345 axioms used for answering the questions. In addition, they added 138 rules in 

order to provide explanations for the answers produced. 

Explanation Generation 

The three teams took quite different approaches to explanation generation. These 

differences were based on the teams’ available technologies (recall that the project 

allowed little time to develop new technologies), their longer-term goals, and their 

instincts of what might work.  

The Ontoprise System 

OntoNova, the Ontoprise sytem, was based on the representation language F(rame)-

Logic, [8] and the logic programming-based inferencing system OntoBroker [4]. For 

answer justification, OntoNova used meta-inferencing, as follows. While processing a 

query, OntoBroker produced a log file of the proof tree for any given answer. This proof 

tree, which was represented in F-Logic and contained the instantiated rules that were 

successfully applied to derive an answer, acted as input for a second inference run to 

produce English answer justifications.  

We illustrate this approach with a sample question. The question asks for the Ka 

value of a substance, given its quantity in moles and its pH. The following is an extract 

from the log file of the proof tree: 
a15106:Instantiation[ofRule->>kavalueMPhKa; 
instantiatedVars->>{i(M,0.2),i(PH,3.0),…]. 

This log file extract states that the rule kavalueMPhKa was applied at the point in 

time logged here. Then, the variables M and PH were instantiated by 0.2 and 3.0 

respectively. Rules important for justifying results, e.g. “kavalueMPhKa,” were applied 



Towards a Digital Aristotle 9 6/18/2004 

  

in the second, meta-inference run. Explanation rules were specified by their reference to 

an inference rule used to derive the answer, the instantiations of the variables of that rule 

and a human-authored explanation template referring to those variables. These 

explanation rules resembled the explanation templates of the SRI system. The 

corresponding explanation-rule for kavalueMPhKa was: 
FORALL I,M1,PH1 explain(EX1,I) <- 
I:Instantiation[ofRule->>kavalueMPhKa;  
instantiatedVars->>{i(M,M1),i(PH,PH1)}] and EX1 is ("The 
equation for calculating the acid-dissociation..). 

These explanation rules were applied to the proof tree to produce the following 

justification output: 

o The equation for calculating the acid-dissociation constant Ka for monoprotic acids is 
Ka=[H+][A-]/[HA]. For monoprotic acids the concentrations for hydrogen [H+] and for 
the anion [A-] are the same: [H+]=[A-]. Thus, we get Ka= 0.0010 * 0.0010 / 0.2 = 5.0E-
6 for a solution concentration [HA] = 0.2 M.  

� The equation for calculating the pH-value is ph=-log[H+]. Thus we get pH-
value ph = 3, H+ concentration [H+] = 0.0010.  

This two-step process for creating explanations allowed the application of 

OntoBroker to generate explanations. For OntoNova, we developed an entire knowledge 

base for this purpose. Running short of time, we could not fully exploit the flexibility of 

this approach and thus mostly restricted it to an approach similar to template matching. In 

the future, however, we plan to apply additional inference rules to (i) integrate additional 

knowledge, (ii) reduce redundancies of explanations, (iii) abstract from fine-grained 

explanations, and (iv) provide personalized explanations. 

Team-SRI’s System 

Team SRI’s system was based on KM, a frame language with some similarities to KRL 

and KL-ONE systems [9]. During reasoning, KM records which rules are used in the 

derivation of ground facts. These proof tree fragments could be presented as an 

“explanation” of the derivation of a fact. Experience with Expert Systems, however, has 

taught us that proof trees and inference traces are not comprehensible explanations for 

most users. 

To provide better explanations, KM allows the knowledge engineer to supply 

explanation templates for each knowledge base rule. These explanation templates provide 

control over which proof tree fragments are presented in the explanation and what 

English text is used to describe them. In particular, the knowledge engineer specifies 

what text to display when a rule is invoked (“entry text”), what text is displayed when the 

rule has been successfully applied (“exit text”), and a list of any other facts that should be 

explained in support of the current rule (dependent facts). The three parts of the 
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explanation template can contain arbitrary KM expressions, allowing the knowledge 

engineer considerable control over explanation generation. 

Consider the law for computing the concentration of ions in a chemical: 

 
ComputeConcentrationOfIons(C) 
 if C is a strong electrolyte 
  return(Max)    [expl-tag-1] 
 else 
  …     [expl-tag-2] 
 
[expl-tag-1] 
 entry: "If a solute is a strong electrolyte, the concentration 
   of ions is maximal" 
 exit: "The concentration of ions in" C "is" Max 
 dependencies: electrolyte-status(C) 

 

When the explanation of a rule application is requested, the entry text is formed and 

displayed, followed by the nested explanation of dependent facts, followed by the exit 

text. The explanation generated for the computation of concentration of ions in NaOH is 

as follows: 

 
• If a solute is a strong electrolyte, the concentration of ions is maximal 

• Checking the electrolyte status of NaOH.  
• Strong acids and bases are strong electrolytes.  
• NaOH is a strong base and is therefore a strong electrolyte.  

• NaOH is thus a strong electrolyte.  
• The concentration of ions in NaOH is 1.00 molar. 

A more complete description of Team-SRI’s system is in [3]. 

The Cycorp System 

All the systems generated their explanations by appropriate filtering and transformation 

of the inference proof tree.  The main difference in Cycorp's approach was that Cyc was 

already capable of providing natural language explanations for any detail, however 

minor: whereas the other systems required the addition of template responses for each 

rule and fact deemed important.  The result of this was that much of the effort expended 

on explanations by Cycorp concerned judicious strengthening of the filters, and Cyc's 

output consequently erred on the side of verbosity. Moreover, Cyc's English, being built 

up compositionally by automatic techniques, rather than being hand-crafted for a specific 

project, exhibits a certain clumsiness of expression. 
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A specific example of where Cyc had a lot of trouble generating readable 

explanations was when the use of a mathematical equation required a lot of arithmetic.  

While a step-by-step exposition of every mathematical step involved is technically 

correct, it makes most readers recoil in horror.  Cyc's lower scores for explanations may 

therefore be ascribed not to any errors contained within, nor to the complete absence of 

an explanation, but to the fact that the key chemistry principles involved tended to be 

buried amid more trivial reasoning.  In the Halo Pilot Challenge, the graders appeared to 

value conciseness of expression over either correctness or completeness.  

In the Halo Pilot Challenge, Cyc produced explanations for every question it 

answered correctly, and it was rare for any of the graders to find any fault with the 

explanations' correctness.  Comments like “Calculations are correct but once again 

buried” and “not well-focused” were common.  It was clear at the end of the pilot phase 

that Cyc required significant work in explanation filtering; substantial progress has been 

made during subsequent projects.   
 

3. Evaluation 

3.1 The Experiment 

At the end of four months, knowledge formulation was stopped, even though the teams 

had not completed the task. All three systems were sequestered on identical servers at 

Vulcan. Then the challenge exam, consisting of 100 novel AP-style English questions, 

was released to the teams. The exam consisted of three sections: 50 multiple-choice 

questions and two sets of 25 multi-part questions—the detailed answer and free form 

sections. The detailed answer section consisted mainly of quantitative questions requiring 

a “fill in the blank” (with explanation) or short essay response. The free-form section 

consisted of qualitative, comprehension questions, which exercised additional reasoning 

tasks such as meta-reasoning, and relied more, if only in a limited way, on commonsense 

knowledge and reasoning. 

Due to the limited scope of the pilot, there was no requirement that questions be 

input in their original, natural language form. Thus, two weeks were allocated to the 

teams for the translation of the exam questions into their respective formal languages. 

Upon completion of the encoding effort, the formal question encodings of each team 

were evaluated by a program-wide committee to guarantee fidelity to the original 

English. The criterion of fidelity was as follows: 
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Assume that a student was fluent in both English and the formal language in question. If 

she is able to infer additional facts from the formal encodings either through omission of 

detail or because new material details were provided that were not available in the 

English description of the question, then a fidelity violation had occurred.   

 

Once the encodings were evaluated, Vulcan personnel submitted them to the 

sequestered systems. The evaluations ran in batch mode. The Ontoprise system 

completed its processing in two hours, the Team-SRI system in five hours and the Cycorp 

system in a little over twelve hours. Each of the three systems produced an output file in 

accordance with a pre-defined specification. For each question, the format required the 

specification of the question number; the full English text of the question; a clear answer, 

either in prose or letter-form for multiple choice questions; and an explanation of how the 

answer was derived—even for multiple choice questions. See the sidebar on system 

outputs for more details. 

Vulcan engaged three chemistry professors to evaluate the exams. Adopting an AP-

style evaluation methodology, they graded each question for both correctness and the 

quality of the explanation. The exam encompassed 168 distinct gradable components 

consisting of questions and question sub-parts. Each of these received marks, ranging 

from 0 to 1 point each for correctness and - separately - for explanation quality, for a 

maximum high score of 336. All three experts graded all three exams. The scoring of all 

three chemistry experts was aggregated for a maximum high score of 1008.  

3.2 Empirical Results  

Vulcan was able to run all of the applications during the challenge, despite minor 

problems associated with each of the three systems4. Results were compiled for the three 

exam sections separately and then aggregated to form the total scores. Despite significant 

differences in approach, all three systems performed remarkably well, garnering above 40 

percent for correctness for most of the graders—a score comparable to an AP-3 (out of 

5)—close to the mean human score of AP-2.82! 

The multiple-choice (MC) section consisted of 50 questions, MC1 through MC50. 

Each of these questions featured five choices, lettered “a” through “e.” The evaluation 

required both an answer and a justification for full credit, even for MC questions. Figure 

2 provides an example of one of the MC questions, MC3. 

                                                   
4 After the challenge evaluation was complete, the teams put in a considerable effort to make improved 
versions of their application for use by the general public. These improved versions address many of the 
problems encountered on the sequestered versions. Vulcan Inc has made both the sequestered and improved 
versions available for download on the project Halo Web site. 
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Sodium azide is used in air bags to rapidly produce gas to inflate the bag. The 
products of the decomposition reaction are: 
(a)Na and water; 
(b)Ammonia and sodium metal; 
(c)N2 and O2; 
(d)Sodium and nitrogen gas; 
(e)Sodium oxide and nitrogen gas. 

Figure 2: An example of a MC section question, MC3 

Figure 3 depicts the correctness (on the left) and answer-justification (on the right) 

scores for the MC section as a percentage of the 50-point maximum. Cycorp, Ontoprise 

and Team-SRI scores are depicted by purple, magenta and yellow bars respectively. Bars 

are grouped by the grading chemistry professors, SME1 through SME3, where SME 

stands for Subject Matter Expert. SRI and Ontoprise both scored about 70% correct in 

this section, while Cycorp scored slightly above 50%. Cycorp applied a meta-reasoning 

technique to evaluate multiple-choice questions. First, Cycorp’s OpenHalo attempted to 

find a correct answer among the five. If it failed to do so, it would attempt to determine 

which of the five options were provably wrong. This led to some questions returning 

more than one-letter answers, none of which received credit from the SMEs. In contrast, 

the other two teams hard-coded the approach to be used—direct proof vs. elimination of 

obvious wrong answers—and appeared to  fare better. 

The answer-justification scores were all considerably lower than the correctness 

scores. [Note: these two measurements were not independent.] Systems that were unable 

to produce an answer did not produce a justification, and systems that produced incorrect 

answers were rarely able to produce convincing answer justifications. The answer 

justification scores were also far less uniform than the correctness scores5, with the 

scoring for SRI appearing to be the most consistent across the three evaluators. All the 

evaluators found the SRI justifications to be the best, while the Cycorp generative-

English was the least comprehensible to the SMEs.  

                                                   
5 One explanation for this is that, although agreed-upon guidelines exist for marking human justifications, 
the Halo systems produced justifications unlike any the graders have seen before (e.g., with extensive 
verbatim repetition), and for which no agreed-upon scoring protocol has been established. 
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Figure 3: Correctness and Answer-justification scores for MC section as a percentage of the 
maximum score of 50 points  

 
The Detailed Answer (DA) section had 25 multi-part essay questions, DA1- DA25, 
representing a total of 80 gradable answer components. Figure 4 depicts an example of a 
DA section question, DA1. Figure 5 depicts the correctness and answer-justification 
scores for the DA section. The correctness assessment shows a slight advantage to the 
Cycorp system in this section. OpenHalo may have fared better here because it was not 
penalized by its multiple-choice strategy in this section.  
 

Balance the following reactions, and indicate whether they are examples of 
combustion, decomposition, or combination  
(a)C4H10 + O2 → CO2 + H2O 
(b)KClO3 → KCl + O2 

(c)CH3CH2OH + O2 → CO2 + H2O 
(d)P4 + O2 → P2O5 

(e)N2O5 + H2O → HNO3 

Figure 4: An example of a DA section question, DA1 
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Figure 5: Correctness and Answer-Justification scores for DA section as a percentage of the 
maximum score of 80 points 

Pure water is a poor conductor of electricity, yet ordinary tap water is a good   
conductor. Account for this difference. 

Figure 6: An example of a FF section question, FF2 

The Free Form (FF) section also had 25 multi-part essay questions, FF1 – FF25, 

representing 38 gradable answer components. Figure 6 depicts an example of an FF 

question, FF2. Figure 7 shows the correctness and answer-justification scores for the FF 

section respectively. This section was designed to include questions that were somewhat 

beyond the scope of the defined syllabus. Some questions required meta-reasoning and, 

in some cases, limited commonsense knowledge. The objective was to see how well the 

systems performed faced with such challenges and whether the additional knowledge 

constructs available to Team SRI and Cycorp would translate into better results. The 

outcome of this section showed a marked advantage to the SRI system, both for 

correctness and for justification. We were surprised that the Cycorp system did not do 

better, given its many thousands of concepts and relations and the rich expressivity of 

CycL. This result may reflect the inability of their knowledge engineering team to 

leverage knowledge in CYC for this particular challenge.   
 

 
Figure 7: Correctness and Answer Justification scores for FF section as a percentage of the 
maximum score of 38 points. Note that Team SRI fared significantly better both in the correctness 
and justification scoring. 
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Figure 8 provides the total challenge results, as percentages of the 168-point 

maximum scores, for answer correctness and justifications. The correctness scores show 

a similar trend for the three SMEs, with Team SRI slightly outperforming Ontoprise and 

Ontoprise slightly outperforming Cycorp. By contrast, the justification scores display a 

significant amount of variability. We are considering changes in our methodology to 

address this issue, including training future SMEs to produce more consistent scoring. 

 

Figure 8: Total correctness and justification scores as a percentage of the maximum score of 168 
points 

All SMEs found some answer justifications that they liked. The SMEs provided 

high-level comments, mostly focused on the organization and conciseness of the 

justifications. In some instances, justifications were quite long. For example, Cycorp’s 

generative English produced some justifications in excess of 16 pages in length. The 

SMEs also complained that many arguments were used repetitively and that proofs took a 

long time to “get to the point.” In some multiple-choice questions, proofs involved 

invalidating all wrong answers, rather than proving the right one. All the teams appeared 

to rely on instance-based solutions to prove generalized comprehension-oriented 

questions, indicating a limited ability to reason with concepts. Gaps in knowledge 

coverage were also evident. For example, many of the teams had significant gaps in their 

knowledge of net ionic equations. Detailed question-by-question scores are available on 

the project Web site. 

3.3 Problematic Questions  

Despite the impressive overall performance of the three systems, there were questions on 

which each of them failed.  Most interestingly, there were questions on which all three 

systems failed dramatically.   Five prominent and interesting cases – DA10, DA22, FF1, 

FF8, and FF22 – are shown in Figure 9. We examine these questions more closely.   

The first issue to address is whether these questions share properties that explain 

their difficulty. An initial hypothesis is that all five questions require that a system be 

able to represent and reason about its own problem-solving procedures and data 
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structures – that is, that it be reflective or capable of meta-representation and meta-

reasoning. That property would explain the difficulty all three systems had, at least to the 

extent that the systems can be said to lack such reflective capabilities.   

DA10 seems to probe a system’s strategy for solving any of a general class of 

problems; indeed, it seems to ask for an explicit description of that strategy. DA22 

implies that the pH calculation that a problem-solver is likely to use will generate an 

unacceptable result in this case (a value of greater than 7 for an acid) and then asks for an 

explanation of what went wrong: that is, of why the normal pH calculation leads to an 

anomalous result here. These two questions both seem to require the system to represent 

and reason about, indeed, to explain the workings of its own problem-solving procedures.   

FF22 seems similar in that it asks about the applicability of approximate solutions for 

a certain class of problems, and about the reasons for the limits to that applicability. On 

reflection, though, it is really probing the system’s knowledge of certain methodological 

principles used in chemistry, rather than the system’s knowledge of its own inner 

workings.   What seems to be missing is knowledge about chemistry – not about chemical 

compounds, but rather about methods used in chemistry, in particular about approximate 

methods, their scope and limits.  And, of course, these latter methods may or may not be 

built into the system’s own problem-solving routines. 
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Figure 9 Examples of chemistry questions that proved to be problematic for all three teams. 

FF1 and FF8 are similar in that one asks for similarities and the other for differences, 

and in both cases, the systems did represent the knowledge but did not support the 

reasoning method to compute them. 

FF1 is a question about the language of chemistry - in particular, about the abstract 

syntax or type-conventions of terms for chemical compounds. All three systems had 

some knowledge encoded so that the differences could be computed, but lacked the 

necessary reasoning method to compute them. 

3.3 A Note on Performance 

The Halo Pilot Challenge was run by Vulcan personnel over the course of a day and a 

half on sequestered systems at Vulcan’s offices. As noted above, minor problems were 

encountered with all three systems that were resolved over this period of time. Among 

other issues, the batch files containing the formal encodings of the challenge questions 

DA10: HCl, H2SO4, HClO4, and HNO3 are all examples of strong acids and are 
100% ionized in water. This is known as the “leveling effect” of the solvent. Explain 
how you would establish the relative strengths of these acids. That is, how would you 
answer a question such as “which of these acids is the strongest?”   
 
 
DA22. Phenol, C6H5OH, is a very weak acid with an acid equilibrium constant of Ka 
= 1.3 x 10-10. Determine the pH of a very dilute, 1 x 10-5 M, solution of phenol. Is 
the value acceptable? If not, give a possible explanation for the unreasonable pH 
value. 
 
 
FF1. What is the difference between the subscript 3 in HNO3 and a coefficient 3 in 
front of HNO3?  
 
 
FF8. Although nitric acid and phosphoric acid have very different properties as pure 
substances, their aqueous solutions possess many common properties. List some 
general properties of these solutions and explain their common behavior in terms of 
the species present. 
 
FF22. When we solve equilibrium expressions for the [H3O+] approximations are 
often made to reduce the complexity of the equation thus making it easier to solve. 
Why can we make these approximations? Would these approximations ever lead to 
significant errors in the answer? If so give an example of an equilibrium problem that 
would require use of the quadratic equation.  
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needed to be broken into two to facilitate their processing on all three systems. The 

Ontoprise system proved to be the fastest and most reliable, taking approximately two 

hours to complete its batch run. The SRI system ran the challenge in approximately five 

hours, and the Cycorp system completed its processing in over twelve hours. In this latter 

case, a memory leak on the sequestered platform caused the server to crash, and the 

system was rebooted and ran until the evaluation time limit expired. 

All three teams undertook modifications and improvements to the sequestered 

systems and ran the challenges again. In this case, the Ontoprise system was able to 

complete the challenge in nine minutes, the SRI system in thirty minutes and the Cycorp 

system took approximately 27 hours to process the challenge. Both the sequestered and 

the improved systems are freely available for download off the Project Halo project Web 

site.  

 

SIDEBAR ON EVALUATION OF Q/A SYSTEMS GOES NEAR HERE 

(The text for this sidebar is at the end of the paper) 

 

SIDEBAR ON EXAMPLES OF SYSTEM OUTPUTS AND GRADER 

COMMENTS GOES NEAR HERE 

(The text for this sidebar is at the end of the paper) 

 

4. Analysis 

4.1 Failure Analysis 

The three systems did well – better than Vulcan expected. Nevertheless, their 

performance was far from perfect, and the goal of the pilot project was to go beyond 

evaluations of KR&R systems to an analysis of them. Therefore, we wanted to 

understand why these systems failed when they did, the relative frequency of each type of 

failure, and the ways these failures might be avoided or mitigated. 

Based on our collective experience building KR&R systems, at the beginning of 

Project Halo we designed a taxonomy of failures that fielded systems might experience. 

At the end of the project, every point lost on the evaluation was analyzed in an attempt to 

identify the failure and place it within the taxonomy. The resulting data was studied to 

draw lessons about the taxonomy, the systems, and (by extrapolation) the current state of 

KR&R technologies for building fielded systems. See [10] for a comprehensive report of 

this study. 
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In particular, the failure analysis suggests three broad lessons that can be drawn 

across the board for the three systems:  

Modeling: A common theme in the modeling problems encountered across all three 

systems was that the knowledge was represented incorrectly, or some domain assumption 

was not adequately factored in, or the knowledge was not captured at the right level of 

abstraction. Addressing these problems requires direct involvement of the domain experts 

in the knowledge engineering process. The teams involved domain experts to different 

extents, and at different times during the course of the project. The SRI team, which 

involved professional chemists from the beginning of the project, appeared to benefit 

substantially. This presents a research challenge, since it suggests that the expositions of 

chemistry in current texts are not sufficient for building or training knowledge-based 

systems. Instead, a high-level domain expert must be involved in formulating the 

knowledge appropriately for system use. Two approaches to ameliorating this problem 

that are being pursued by participants are: 1) providing tools that support direct 

manipulation and testing of KR&R systems by such experts, and 2) providing the 

background knowledge required by a system to make appropriate use of specialized 

knowledge as it is presented in texts.  

Answer Justification: Explanation, or, more generally, response interpretability, is 

fundamental to the acceptance of a knowledge-based system, yet for all three state of the 

art systems, it proved to be a substantial challenge.  Since the utility of the system will be 

evaluated end to end, it is to a large degree immaterial whether its answers are correct, if 

they cannot be understood. Constructing explanations directly from the system’s proof 

strategy is neither straightforward nor particularly sucessful, especially if that strategy has 

not been designed with explanation in mind. One alternative is to use explicit 

representations of problem-solving methods (PSMs), so that explanations can include 

statements of problem-solving strategy as well as statements of facts and rules [11]. 

Another is to perform more meta-reasoning over the proof tree to construct a more 

readable explanation. 

Scalability for Speed and Reuse: There has been substantial work in the literature 

on the tradeoff between expressiveness and tractability, yet managing this tradeoff, or 

even predicting its effect in the design of fielded systems over real domains is still not at 

all straightforward. To move from a theoretical to an engineering model of scalability, the 

KR community would benefit from a more systematic exploration of this area driven by 

the empirical requirements of problems at a wide range of scales. For example, the three 

Halo systems, and more generally, the Halo development and testing corpora, can 

provide an excellent test bed to enable KR&R researchers to pursue experimental 

research in the tradeoff between expressiveness and tractability.  
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4.2 Discussion 

All three logical languages, KM, F-Logic and CycL, were expressive enough to represent 

most of the knowledge in this domain. F-Logic was by far the most concise and easy to 

read, with syntax most resembling an object-oriented language. F-Logic also yielded very 

high-fidelity representations that appear to be easier and more intuitive to construct. 

Ontoprise was the only team to conduct a sensitivity study of the impact of different 

question encodings on system performance. In the case of the two questions they 

examined, their system produced similar answers with slightly different justifications. For 

the most part, the encoding process and its impact on question-answering stability remain 

an open research topic.  

SRI and Ontoprise yielded comparably sized knowledge bases. OntoNova was built 

from scratch using no pre-defined primitives, while SRI’s system leveraged the 

Component Library, though not as extensively as they had initially hoped. SRI’s use of 

professional chemists in the knowledge formulation process was a huge advantage and 

the quality of their outcome is reflected by this fact. The other teams have conceded that, 

had they the opportunity to revisit the challenge, they would have adopted the use of 

SMEs in knowledge formation. Cycorp’s OpenHalo knowledge base was two orders of 

magnitude larger than the other teams’. They were unable to demonstrate any measurable 

advantage in using this additional knowledge, even in example-based questions, where 

they exhibited meta-reasoning brittleness similar to that observed in the other systems. 

The size of their knowledge base does however explain some of the significant run-time 

differences. They have also yet to demonstrate successful, effective reintegration of Halo 

knowledge into the extended Cyc platform. Reuse and integration appear to remain open 

questions for all three Halo teams.  

The most novel aspect of the Halo pilot was the great emphasis put on answer 

justification, which served two primary purposes: (i) to exhibit and thereby verify that 

deep reasoning was occurring and (ii) to validate that appropriate, human-readable 

domain explanations can be generated. This is an area that is still open to significant 

improvement. SRI’s approach produced the best quality results, but it leaves open many 

questions regarding how well it might be scaled, generalized and reused. Cycorp’s 

generative approach may eventually scale and generalize, but the current results were 

extremely verbose and often unintelligible to domain experts. Ontoprise’s approach of 

running a second inference process appears to be very promising in the near term. 

Vulcan Inc. and the pilot participants have invested considerable efforts in promoting 

the scientific transparency of the Halo pilot. The project Web site provides all the 

scientifically relevant documentation and tutorials, including an interactive results 
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browser and fully documented downloads representing both the sequestered systems and 

improved Halo pilot chemistry knowledge bases. We eagerly anticipate comment from 

the AI community and look forward to its use by universities and other researchers. 

Finally, the issue of cost must be considered. We estimate that the per-page expense 

for each of the three Halo teams was on the order of $10,000 per page for the 70-page 

syllabus. This cost must be significantly reduced before this technology can be 

considered viable for the Digital Aristotle.  

 

In summary, all the Halo systems scored well on a very difficult challenge: 

extrapolating the results of Team SRI’s system on the limited 70-page syllabus to the 

entire AP syllabus yielded the equivalent of an AP-3 score for answer correctness – good 

enough to earn course credit at many top universities. The Halo teams believe that with 

additional, limited effort they would be able to improve the scores to the AP-4 level and 

beyond. Vulcan Inc. has developed two additional challenge question sets to validate 

these claims at a future date. 

5. Conclusions and Next Steps   

As we noted at the beginning of this article, Project Halo is a multi-staged effort.  In the 

foregoing, we have described Phase I, which assessed the capability of knowledge-based 

systems to answer a wide variety of unanticipated questions with coherent explanations.  

Phase II of Project Halo will examine whether tools can be built to enable domain experts 

to build such systems with an ever-decreasing reliance on knowledge engineers – a goal 

that was pursued in DARPA’s Rapid Knowledge Formation project. Empowering domain 

experts to build robust knowledge bases with little or no assistance from knowledge 

engineers will: (i) dramatically decrease the cost of knowledge formulation; (ii) greatly 

reduce the type of errors observed in the Halo pilot that were due to knowledge 

engineers’ lack of domain understanding; (iii) facilitate a growing, peer-reviewed body of 

machine-processable knowledge that will form the basis for the Digital Aristotle. A 

critical measure of success is the degree to which the relevant scientific communities are 

willing to adopt these tools, especially in their pedagogies.   

At the core of the knowledge formulation approach envisioned in Phase II is a 

document-rooted methodology, in which the domain expert uses an existing document, 

such as a textbook, as the basis for the formulation of a knowledge module. Tying 

knowledge modules to documents in this way will help determine the scope and context 

of each module, the types of questions they can be expected to answer and the 

appropriate depth and resolution of the answers. 
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The 30-month Phase II effort will be undertaken in three stages. First, a six-month, 

analysis-driven design process will examine the complete AP syllabi for chemistry, 

biology and physics (B). The objective of this analysis will be to determine requirements 

on effective use by domain experts of a range of knowledge acquisition technologies. The 

results of this study should allow us to: (i) determine the gaps in “coverage” of  current 

state of the art knowledge acquisition techniques and define targeted research to fill those 

gaps; (ii) understand and prioritize the knowledge types, methods, techniques and 

technologies that will be central to the Halo 2 application; (iii) understand the usability 

challenges faced by domain experts using the identified methodologies in an array of 

knowledge and question formulation scenarios, (iv) produce a coherent, well motivated 

design. 

A 15-month implementation stage will follow. Here, the detailed designs will be 

rendered into working systems and these systems will be subject to a comprehensive user 

evaluation to understand their viability and the degree to which the empirical data from 

actual use by domain experts fits the models developed during the design stage. Finally, a 

nine-month refinement stage will attempt to correct the shortcomings detected in the 

implementation stage evaluation and a second evaluation will be undertaken to validate 

the refinements.  

Future work will focus on tactical research to fill gaps identified in Halo 2 that will 

lead to greater coverage of the scientific domains. These efforts will investigate both 

automated and semi-automated methods to facilitate formulation of knowledge and 

posing of questions, and provide better tools for evaluation and inspection of the 

knowledge formulation and question-answering processes. We will also be focusing on 

reducing brittleness and other systemic failures of the Halo Phase II systems that will be 

identified by a comprehensive failure analysis of the sort we developed for Phase I. We 

will be seeking the assistance of the KR&R community to standardize our extended 

failure taxonomy for use in a wide variety of   knowledge-based applications. 

Throughout Phase II, Project Halo will be conducting an ongoing dialogue with 

domain experts and educators, especially those from the three targeted scientific 

disciplines. Our aims are to better understand their needs and to explain the potential 

benefits of the availability of high-quality machine-processable knowledge to both 

research and education. For example, once a proof of concept for our knowledge 

formulation approach has been established, Project Halo will consider how knowledge 

modules might be integrated into interactive tutoring applications. We will also examine 

how such modules might assist knowledge-driven discovery, as part of the functionality 

of a digital research assistant. 
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——— Sidebar: History of Evaluating Q/A Systems (BEGIN) —— 

 

Sidebar: A Brief History of Evaluating Knowledge Systems 

One unique aspect of the Halo pilot is its rigorous scheme of evaluation. It uses an 

independently defined, and well-understood test, specifically, the advanced placement 

test for chemistry, on a well-defined scope, specifically, 70 pages of a chemistry 

textbook. Though such rigorous evaluation schemes have been available for quite a while 

in the areas of shallow information extraction (the MUC conferences) information 

retrieval and simple question answering (the TREC conferences), the corresponding task 

of evaluating the kind of knowledge-based systems deployed in the Halo pilot appeared 

to be too difficult to be approached in one step.  

Thus, previous efforts at measuring the performance of knowledge-based systems 

such as in HPKB (High-Performance Knowledge Bases) and RKF (Rapid Knowledge 

Formation) constituted important stepping stones towards rigorous evaluation of 

knowledge-based systems, but the Halo pilot represents a significant advance. To 

substantiate this summary, we shall review some of the details of developments in these 

various areas.  

Retrieving answers from texts 

Question-answering via information retrieval and extraction from texts has been an active 

area of research, with a progression of annual competitions and conferences, especially 

the seven Message Understanding Conferences (MUCs) and the 12 Text Retrieval 

Conferences (TRECs) from 1992-2003, sponsored by NIST, IAD, DARPA, and ARDA. 

TRECs were initially aimed at retrieving relevant texts from large collections and then at 

extracting relevant passages from texts [1]. The earlier systems had virtually no need for 

inference-capable knowledge bases and reasoning capabilities. In recent years the 

question-answering tasks have become more challenging, e.g., requiring a direct answer 

to a question rather than a passage containing the answer. The evaluation schemes are 

very well-defined, including well worked-out definitions of the tasks and answer keys 

that are used to compute evaluation measures including precision and recall. 

Recently there has been a surge of interest in the use of domain knowledge in 

question-answering (e.g., see) [12]. ARDA's current AQUAINT program (Advanced 

Question and Answering for Intelligence), started in 2001, is pushing text-based 

question-answering technology further, seeking to address a typical intelligence gathering 
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scenario in which multiple, inter-related questions are used to fulfill an overall 

information need, rather than answering single, isolated, fact-based questions.   

AQUAINT has adopted TREC’s approach to the evaluation of question-answering  and 

tried to extend it to encompass more complex question types, e.g. biographical questions 

of the form “Tell me all the important things you know about Osama bin Laden.”  The 

fundamental difference between the Halo evaluation and the AQUAINT evaluation is 

that the AQUAINT evaluations are designed to test the question-answering capability on 

huge bodies of text on widely ranging subjects, using very limited reasoning capabilities. 

In contrast, the Halo evaluation is focused on evaluating deep reasoning in the field of 

sciences.  The eventual goal of Halo is to do significant coverage of sciences, but the 

current phase was limited to only 70 pages of a chemistry textbook.   

Building and running knowledge-based systems 

In the area of knowledge-based systems, DARPA, AFOSR, NRI and NSF jointly funded 

the Knowledge Sharing Effort in 1991 [13]. This was a three-year collaborative program 

to develop “knowledge sharing” technologies to facilitate the exchange and reuse of 

inference-capable knowledge bases among different groups. The aim was to help reduce 

costs and promote development of knowledge-based applications. This was followed by 

DARPA's High Performance Knowledge Base (HPKB) program (1996-2000), designed 

to push knowledge-based technology further and demonstrate that very large (100k+ 

axiom) systems could be built quickly and be usefully applied to question-answering 

tasks [14]. The evaluation in HPKB was aimed simply at the hypothesis that large 

knowledge-based systems can be built at all, that they can accomplish interesting tasks, 

and that they do not break – as a toy system would and as many of the initial knowledge-

based systems did – when working with a realistically sized knowledge base. 

Evaluating knowledge-based systems 

There have been few efforts so far at documenting and analyzing the quality of fielded 

KR&R systems, [15], [16], [17]. RKF made significant efforts to analyze and document 

the quality of the knowledge base performance [18]. Specifically, an evaluation in 

DARPA’s Rapid Knowledge Formation project, which was roughly comparable to the 

one used in Project Halo, was based on approximately 10 pages from a biology textbook 

and a set of test questions – however, this was not an independently established test.  The 

Halo pilot, reported on here, improves upon these evaluations by being more systematic 

and useable for cross-system comparisons. The Halo pilot has adopted an evaluation 

standard that is comparable to the rigor of the challenges for retrieving answers from 
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texts. It provides an exact definition of the scope of the domain – an AP chemistry test 

setting that has proven its validity in many years and many students -- as well as an 

objective evaluation by independent graders. We conjecture that the Halo evaluation 

scheme is extensible enough to support a coherent long term development program. 
 

——— Sidebar: History of Evaluating Q/A Systems (END) —— 
 
 
 
 
 
 
 
 
 
 

—————Sidebar: Examples of System Outputs (BEGIN)—— 

Sidebar: Examples of System Outputs and Grader Comments 

The Halo pilot evaluation was intended to assess deep reasoning capabilities of the three 

competing systems in the context of a well known evaluation methodology. 70 pages of 

the Advance Placement (AP) chemistry syllabus were selected. Systems were required to 

produce coherent answers and answer justification in English to each of the 100 AP-style 

questions posed. In the case of multiple choice questions, a letter response was required. 

The evaluation team consisted of three chemistry professors, who were instructed to 

grade the exams using AP guidelines. Answer justifications were thus required to 

conform to AP guidelines to receive full credit. 

System outputs were required to conform to strict formats. The question number 

needed to be clearly indicated, followed by the original English text of the question. This 

was to be followed by the answer. Multiple choice questions required a letter answer. 

Finally, the answer justification was required. Justification guidelines required that the 

answers be clear, concise and appropriate for AP exams.   

The system outputs were rendered into hardcopy and distributed to three chemistry 

professors for evaluation. These SMEs, or Subject Matter Experts, were asked to apply 

AP grading guidelines to assess the system outputs and to provide lots of written 

comments.  

Question examples 1 through 3 present Ontoprise, SRI and Cycorp system outputs 

respectively. Examples 1 and 2 depict responses to multiple choice question 20, while 
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example 3 depicts the response to multiple choice question 34. These figures also contain 

graders’ remarks. 
 

   
Question Example 1: Ontoprise’s OntoNova application’s output for multiple choice 
question 20. Note the output’s format: the question number is indicated at the top; 
followed by the full English text of the original question; next, the letter answer is 
indicated; finally, the answer justification is presented. The grader’s written remarks are 
included. OntoNova employed a second inference step to derive the answer justification, 
using human authored templates, the proof tree and combination rules to assemble the 
English text. 
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Question Example 2: SRI’s SHAKEN output. Human-authored templates associated with 
chemical methods were combined during the back-chaining process to produce the 
English text.  The templates specify the salient sub-goals to be elaborated as indented 
“sub explanations.” This resulted in generally superior answer justifications.   
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Question Example 3: The output of Cycorp’s OpenHalo application for multiple choice 
question 34. Note the grader’s remarks. OpenHalo used the proof tree and Cyc’s 
generative English capabilities to produce the English answer. This example illustrates 
one of the better outcomes—some questions produced many pages of generative English, 
which were far less intelligible to the graders.  
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The above figure shows a small, if representative, subset of verbatim comments that 
SMEs made on the answers to the questions produced by the system. The SMEs had well-
defined expectations of system behavior, e.g. setting up a problem before actually 
presenting its solution or the number of significant digits used in the output. These 
comments did not reflect, for the most part, on the correctness of the computation, but 
rather were indicators of “how things were to be done on an AP-chemistry exam.” This 
highlights the importance of understanding domain-specific requirements in answer and 
answer-justification formation and generation by question-answering systems.  
 

———————Sidebar: Examples of System Outputs (END)—— 
 
 
 
 
 
 

Comments on SRI Output
Very good, brief presentation in logical order 
Good use of selective elimination
This is a good first effort, but still looks little like what would be expected 
from a student taking this exam.

Generally, when a calculation was required, the program did not follow what
I would expect from a student: namely, a setup, substituted numbers, 
followed by a solution to the problem. 

Comments on Ontoprise Output
Good logical flow, set up with substitutions shown
Well done, and to the point
The logic is more readable (and shorter!) than the KB justifications, 
but it often seems to be presented backwards --- arguing from the
answer as opposed to arguing to the answer.
There was a common error in the use of significant figures.  Answers are
often given in as many figures as the program could generate.  This is
also a common problem with students so I guess we could claim that
the computer is being more human-like in these responses

Comments on Cycorp Output
Main strength of the program is that it did a fairly good job of arriving at the
correct answers
A good approach for replacing the ``reasoning'' used in this program is
to use ``Show Method of Calculation'' (for all questions which involve the 
calculation of a numerical answer) and ``Explain Reasoning'' (for all
questions which do not involve a calculated answer)
In general, the program appears to take a quantitative approach when
answering questions and does not know how to take a qualitative
approach.  For example, when the activity series was part of a question, 
the program would use cell potentials

The ``reasoning'' are much, much, much too long. A sufficient ``reasoning'' 
to any of the questions on the exam never requires more than the 1/2 page.
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